1,472 research outputs found

    Antiferromagnetic and Orbital Ordering on a Diamond Lattice Near Quantum Criticality

    Full text link
    We present neutron scattering measurements on powder samples of the spinel FeSc2S4 that reveal a previously unobserved magnetic ordering transition occurring at 11.8(2)~K. Magnetic ordering occurs subsequent to a subtle cubic-to-tetragonal structural transition which distorts Fe coordinating sulfur tetrahedra lifting the orbital degeneracy. The application of 1~GPa hydrostatic pressure appears to destabilize this N\'eel state, reducing the transition temperature to 8.6(8)~K and redistributing magnetic spectral weight to higher energies. The relative magnitudes of ordered m2 ⁣= ⁣3.1(2)\langle m \rangle^2\!=\!3.1(2) and fluctuating moments δm2 ⁣= ⁣13(1)\langle \delta m \rangle^2\!=\!13(1) show that the magnetically ordered ground state of FeSc2S4 is drastically renormalized and in proximity to criticality.Comment: 16 pages, 12 figure

    Dynamical Structure Factor of the Three-Dimensional Quantum Spin Liquid Candidate NaCaNi2F7

    No full text
    We study the dynamical structure factor of the spin-1 pyrochlore material NaCaNi2F7, which is well described by a weakly perturbed nearest-neighbour Heisenberg Hamiltonian, Our three approaches- molecular dynamics simulations, stochastic dynamical theory, and linear spin wave theory-reproduce remarkably well the momentum dependence of the experimental inelastic neutron scattering intensity as well as its energy dependence with the exception of the lowest energies. We discuss two surprising aspects and their implications for quantum spin liquids in general: the complete lack of sharp quasiparticle excitations in momentum space and the success of the linear spin wave theory in a regime where it would be expected to fail for several reasons
    corecore