505 research outputs found

    Maximum Significance at the LHC and Higgs Decays to Muons

    Get PDF
    We present a new way to define and compute the maximum significance achievable for signal and background processes at the LHC, using all available phase space information. As an example, we show that a light Higgs boson produced in weak--boson fusion with a subsequent decay into muons can be extracted from the backgrounds. The method, aimed at phenomenological studies, can be incorporated in parton--level event generators and accommodate parametric descriptions of detector effects for selected observables.Comment: 7 pages, 2 figures, changes to wording and new references, published versio

    Dark Matter and Collider Phenomenology with two light Supersymmetric Higgs Bosons

    Full text link
    Recently, it has been pointed out that two different excesses of events observed at LEP could be interpreted as the CP-even Higgs bosons of the MSSM with masses of approximately 98 and 114 GeV. If this is the case, the entire MSSM Higgs sector is required to be light. In this article, we explore such a scenario in detail. We constrain the Higgs and supersymmetric spectrum using BB physics constraints as well as the magnetic moment of the muon. We then point out the implications for neutralino dark matter -- next generation direct detection experiments will be sensitive to all MSSM models with such a Higgs sector. Finally, we find that all models outside of a very narrow corridor of the parameter space have a charged Higgs boson which will be observed at the LHC. In those exceptional models which do not contain an observable charged Higgs, a light top squark will always be seen at the LHC, and likely at the Tevatron.Comment: 12 pages, 18 figure

    Weak boson fusion production of supersymmetric particles at the LHC

    Full text link
    We present a complete calculation of weak boson fusion production of colorless supersymmetric particles at the LHC, using the new matrix element generator SUSY-MadGraph. The cross sections are small, generally at the attobarn level, with a few notable exceptions which might provide additional supersymmetric parameter measurements. We discuss in detail how to consistently define supersymmetric weak couplings to preserve unitarity of weak gauge boson scattering amplitudes to fermions, and derive sum rules for weak supersymmetric couplings.Comment: 24 p., 3 fig., 9 tab., published in PRD; numbers in Table IV corrected to those with kinematic cuts cite

    Charged Higgs Boson Pairs at the LHC

    Full text link
    We compute the cross section for pair production of charged Higgs bosons at the LHC and compare the three production mechanisms. The bottom-parton scattering process is computed to NLO, and the validity of the bottom-parton approach is established in detail. The light-flavor Drell-Yan cross section is evaluated at NLO as well. The gluon fusion process through a one-loop amplitude is then compared with these two results. We show how a complete sample of events could look, in terms of total cross sections and distributions of the heavy final states.Comment: 15 pages with 8 figure

    Precision Measurements of Higgs Couplings: Implications for New Physics Scales

    Full text link
    The measured properties of the recently discovered Higgs boson are in good agreement with predictions from the Standard Model. However, small deviations in the Higgs couplings may manifest themselves once the currently large uncertainties will be improved as part of the LHC program and at a future Higgs factory. We review typical new physics scenarios that lead to observable modifications of the Higgs interactions. They can be divided into two broad categories: mixing effects as in portal models or extended Higgs sectors, and vertex loop effects from new matter or gauge fields. In each model we relate coupling deviations to their effective new physics scale. It turns out that with percent level precision the Higgs couplings will be sensitive to the multi-TeV regime.Comment: Invited review for Journal of Physics G, 33pp; v2: references added and improved discussion of operator basis in section 2.

    Single scalar top production with polarized beams in ep collisions at HERA

    Get PDF
    From the point of view of the R-parity breaking supersymmetric model, we propose a scalar top (stop) search with longitudinally polarized electron (e-) and positron(e+) beams which will soon be available at the upgraded HERA. Fully polarized e- or e+ beams could produce the stop two times as much as unpolarized beams, while they increase background events due to the process of the standard model by about 30% in comparison with unpolarized ones. We show that right-handed e+ beams at HERA is efficient to produce the stop in the model. With 1 fb**(-1) of integrated luminosity we estimate reach in the coupling constant lambda'(131) for masses of the stop in the range 160-400 GeV. We can set a 95% confidence-level exclusion limit for lambda'(131) > 0.01-0.05 in the stop mass range of 240-280 GeV if no singal of the stop is observed. We also point out that y(=Q**2/sx) distributions of e+ coming from the stop shows the different behavior from those of the standard model.Comment: 12 pages, 6 eps figure

    Fittino, a program for determining MSSM parameters from collider observables using an iterative method

    Full text link
    Provided that Supersymmetry (SUSY) is realized, the Large Hadron Collider (LHC) and the future International Linear Collider (ILC) may provide a wealth of precise data from SUSY processes. An important task will be to extract the Lagrangian parameters. On this basis the goal is to uncover the underlying symmetry breaking mechanism from the measured observables. In order to determine the SUSY parameters, the program Fittino has been developed. It uses an iterative fitting technique and a Simulated Annealing algorithm to determine the SUSY parameters directly from the observables without any a priori knowledge of the parameters, using all available loop-corrections to masses and couplings. Simulated Annealing is implemented as a stable and efficient method for finding the optimal parameter values. The theoretical predictions can be provided from any program with SUSY Les Houches Accord interface. As fit result, a set of parameters including the full error matrix and two-dimensional uncertainty contours are obtained. Pull distributions can automatically be created and allow an independent cross-check of the fit results and possible systematic shifts in the parameter determination. A determination of the importance of the individual observables for the measurement of each parameter can be performed after the fit. A flexible user interface is implemented, allowing a wide range of different types of observables and a wide range of parameters to be used.Comment: 32 pages, 6 figures, accepted by Comp. Phys. Com

    Determining the Structure of Higgs Couplings at the LHC

    Get PDF
    Higgs boson production via weak boson fusion at the CERN Large Hadron Collider has the capability to determine the dominant CP nature of a Higgs boson, via the tensor structure of its coupling to weak bosons. This information is contained in the azimuthal angle distribution of the two outgoing forward tagging jets. The technique is independent of both the Higgs boson mass and the observed decay channel.Comment: 5 pages, 4 figures, version accepted for publication in PR
    • …
    corecore