27 research outputs found

    Detailed Diagnostics of the BIOMASS Feed Array Prototype

    Get PDF

    Uniform and fast switching of window-size smectic A liquid crystal panels utilising the field gradient generated at the fringes of patterned electrodes

    Get PDF
    A method to enable smectic A (SmA) liquid crystal (LC) devices to switch uniformly and hence fast from the clear state to a scattered state is presented. It will allow the reduction of the switching time for a SmA LC panel of 1x1 m2 changing from a clear state to a fully scattered state by more than three orders to a few tens of milliseconds. Experimental results presented here reveal that SmA LC scattering initiates from the nucleated LC defects at the field gradient of the applied electric field usually along the edges of the panel electrode and grows laterally to spread over a panel, which takes a long time if the panel size is large. By patterning the electrodes in use, it is possible to create a large number of field gradient sites near the electrode discontinuities, resulting in a uniform and fast switching over the whole panel and the higher the pattern density the shorter the panel switching time. For the SmA LC panels used here, the ITO transparent electrodes are patterned by laser ablation and photolithography, respectively. It is shown that the defect nucleation time is much shorter than the growth time of the scattered region, hence it is possible to use the density of the field gradient sites to control the uniformity and switching time of a panel. Furthermore, the patterned SmA panels have a lower switching voltage than that of the non-patterned ones in general.The authors would like to thank the UK Engineering and Physical Sciences Research Council (EPSRC) for the support through the Platform Grant for Liquid Crystal Photonics (EP/F00897X/1) and Dr Anthony Davey for providing the organic SmA LC and Dow Corning Corp. for providing the siloxane-based SmA LC used in this study. The authors would also like to thank Dr Stuart Speakman for the helpful discussions.This is the final version of the article. It first appeared from Taylor & Francis via http://dx.doi.org/10.1080/02678292.2016.114201

    Sub-millisecond switching of multi-level liquid crystal on silicon spatial light modulators for increased information bandwidth

    No full text
    Sub-millisecond response time with a refresh rate higher than 2000 frames per second (fps) and no degradation of the contrast ratio or diffraction efficiency is demonstrated in working liquid crystal on silicon (LCOS) spatial light modulators (SLMs) with 8-bit grey levels of amplitude and phase modulations. This makes possible to achieve an information bandwidth of about 190 Gb s-1 with a 4k LCOS operating at 10-bit phase modulation levels. The normalised contrast stays at almost the unit level for a frame rate up to 1700 fps and at higher than 0.9 for 2500 fps. The diffraction efficiency stays above -1.0 dB for a frame rate up to 2400 fps. Such a fast response allows us to eliminate image blurring in replaying a fast movie

    Uniform and fast switching of window-size smectic A liquid crystal panels utilising the field gradient generated at the fringes of patterned electrodes

    No full text
    A method to enable smectic A (SmA) liquid crystal (LC) devices to switch uniformly and hence fast from the clear state to a scattered state is presented. It will allow the reduction of the switching time for a SmA LC panel of 1 × 1 m2 changing from a clear state to a fully scattered state by more than three orders to a few tens of milliseconds. Experimental results presented here reveal that SmA LC scattering initiates from the nucleated LC defects at the field gradient of the applied electric field usually along the edges of the panel electrode and grows laterally to spread over a panel, which takes a long time if the panel size is large. By patterning the electrodes in use, it is possible to create a large number of field gradient sites near the electrode discontinuities, resulting in a uniform and fast switching over the whole panel and the higher the pattern density the shorter the panel switching time. For the SmA LC panels used here, the ITO transparent electrodes are patterned by laser ablation and photolithography. It is shown that the defect nucleation time is much shorter than the growth time of the scattered region, hence it is possible to use the density of the field gradient sites to control the uniformity and switching time of a panel. Furthermore, the patterned SmA panels have a lower switching voltage than that of the non-patterned ones in general
    corecore