123 research outputs found

    Effects of sex hormone treatment on the metabolic syndrome in transgender individuals : focus on metabolic cytokines

    Get PDF
    Context: Hormonal treatment in transgender persons affects many components of the metabolic syndrome (MS). Objective: To determine the role of direct hormonal effects, changes in metabolic cytokines, and body composition on metabolic outcomes. Design, Setting, and Participants: 24 transwomen and 45 transmen from the European Network for the Investigation of Gender Incongruence were investigated at baseline and after 12 months of hormonal therapy. Outcome Measures: Best predictors for changes in components of MS, applying least absolute shrinkage and selection operator regression. Results: In transwomen, a decrease in triglyceride levels was best explained by a decrease in fat mass and an increase in fibroblast growth factor 21 (FGF-21); the decrease in total and low-density lipoprotein cholesterol levels was principally due to a decrease in resistin. A decrease in high-density lipoprotein cholesterol depended on an inverse association with fat mass. In contrast, in transmen, an increase in low-density lipoprotein cholesterol was predicted by a decrease in FGF-21 and an increase in the waist/hip ratio; a decrease in the high-density lipoprotein/total cholesterol ratio depended on a decline in adiponectin levels. In transwomen, worsened insulin resistance and increased early insulin response seemed to be due to a direct treatment effect; however, improvements in hepatic insulin sensitivity in transmen were best predicted by a positive association with chemerin, resistin, and FGF-21 and were inversely related to changes in the waist/hip ratio and leptin and adipocyte fatty acid-binding protein levels. Conclusions: The effects of hormonal therapy on different components of the MS are sex-specific and involve a complex interplay of direct hormonal effects, changes in body composition, and metabolic cytokine secretion

    Management of malignant dysgerminoma of the ovary

    Get PDF
    The evolution of treatment for malignant ovarian germ cell tumors has been one of the most successful in the history of gynecologic oncology, with dysgerminoma as the most common type of malignant ovarian germ cell tumors. Since the introduction of platinum-based chemotherapy in the 1980s, 5-year survival rates for early-stage dysgerminomas have been close to 100%, and as high as 98% for advanced stages. Despite this remarkable achievement, many questions remain in routine treatment. By performing a literature review, we aim to highlight both the current treatment of malignant dysgerminoma and unanswered questions in the modern management of this disease. These issues relate firstly to surgical therapy, such as the role of routine omentectomy and lymphadenectomy, the value of complete surgical resection, and the possibility of fertility-sparing surgery. Second, chemotherapy and the question of the possibility of de-escalation in early stages and the potential of neoadjuvant chemotherapy in advanced stages will be addressed. Finally, a brief overview of the current developments of new drug treatment regimens will be given

    Genome-Wide Association Study with Targeted and Non-targeted NMR Metabolomics Identifies 15 Novel Loci of Urinary Human Metabolic Individuality

    Get PDF
    Genome-wide association studies with metabolic traits (mGWAS) uncovered many genetic variants that influence human metabolism. These genetically influenced metabotypes (GIMs) contribute to our metabolic individuality, our capacity to respond to environmental challenges, and our susceptibility to specific diseases. While metabolic homeostasis in blood is a well investigated topic in large mGWAS with over 150 known loci, metabolic detoxification through urinary excretion has only been addressed by few small mGWAS with only 11 associated loci so far. Here we report the largest mGWAS to date, combining targeted and non-targeted 1H NMR analysis of urine samples from 3,861 participants of the SHIP-0 cohort and 1,691 subjects of the KORA F4 cohort. We identified and replicated 22 loci with significant associations with urinary traits, 15 of which are new (HIBCH, CPS1, AGXT, XYLB, TKT, ETNPPL, SLC6A19, DMGDH, SLC36A2, GLDC, SLC6A13, ACSM3, SLC5A11, PNMT, SLC13A3). Two-thirds of the urinary loci also have a metabolite association in blood. For all but one of the 6 loci where significant associations target the same metabolite in blood and urine, the genetic effects have the same direction in both fluids. In contrast, for the SLC5A11 locus, we found increased levels of myo-inositol in urine whereas mGWAS in blood reported decreased levels for the same genetic variant. This might indicate less effective re-absorption of myo-inositol in the kidneys of carriers. In summary, our study more than doubles the number of known loci that influence urinary phenotypes. It thus allows novel insights into the relationship between blood homeostasis and its regulation through excretion. The newly discovered loci also include variants previously linked to chronic kidney disease (CPS1, SLC6A13), pulmonary hypertension (CPS1), and ischemic stroke (XYLB). By establishing connections from gene to disease via metabolic traits our results provide novel hypotheses about molecular mechanisms involved in the etiology of diseases

    GIGYF1 loss of function is associated with clonal mosaicism and adverse metabolic health.

    Get PDF
    Funder: Department of HealthMosaic loss of chromosome Y (LOY) in leukocytes is the most common form of clonal mosaicism, caused by dysregulation in cell-cycle and DNA damage response pathways. Previous genetic studies have focussed on identifying common variants associated with LOY, which we now extend to rarer, protein-coding variation using exome sequences from 82,277 male UK Biobank participants. We find that loss of function of two genes-CHEK2 and GIGYF1-reach exome-wide significance. Rare alleles in GIGYF1 have not previously been implicated in any complex trait, but here loss-of-function carriers exhibit six-fold higher susceptibility to LOY (OR = 5.99 [3.04-11.81], p = 1.3 × 10-10). These same alleles are also associated with adverse metabolic health, including higher susceptibility to Type 2 Diabetes (OR = 6.10 [3.51-10.61], p = 1.8 × 10-12), 4 kg higher fat mass (p = 1.3 × 10-4), 2.32 nmol/L lower serum IGF1 levels (p = 1.5 × 10-4) and 4.5 kg lower handgrip strength (p = 4.7 × 10-7) consistent with proposed GIGYF1 enhancement of insulin and IGF-1 receptor signalling. These associations are mirrored by a common variant nearby associated with the expression of GIGYF1. Our observations highlight a potential direct connection between clonal mosaicism and metabolic health

    Detection and characterization of male sex chromosome abnormalities in the UK Biobank study

    Get PDF
    Purpose: The study aimed to systematically ascertain male sex chromosome abnormalities, 47,XXY (Klinefelter syndrome [KS]) and 47,XYY, and characterize their risks of adverse health outcomes. Methods: We analyzed genotyping array or exome sequence data in 207,067 men of European ancestry aged 40 to 70 years from the UK Biobank and related these to extensive routine health record data. Results: Only 49 of 213 (23%) of men whom we identified with KS and only 1 of 143 (0.7%) with 47,XYY had a diagnosis of abnormal karyotype on their medical records or self-report. We observed expected associations for KS with reproductive dysfunction (late puberty: risk ratio [RR] = 2.7; childlessness: RR = 4.2; testosterone concentration: RR = -3.8 nmol/L, all P < 2 x 10(-8)), whereas XYY men appeared to have normal reproductive function. Despite this difference, we identified several higher disease risks shared across both KS and 47,XYY, including type 2 diabetes (RR = 3.0 and 2.6, respectively), venous thrombosis (RR = 6.4 and 7.4, respectively), pulmonary embolism (RR = 3.3 and 3.7, respectively), and chronic obstructive pulmonary disease (RR = 4.4 and 4.6, respectively) (all P Conclusion: KS and 47,XYY were mostly unrecognized but conferred substantially higher risks for metabolic, vascular, and respiratory diseases, which were only partially explained by higher levels of body mass index, deprivation, and smoking. (C) 2022 The Authors. Published by Elsevier Inc. on behalf of American College of Medical Genetics and Genomics.Peer reviewe

    Lipidomics, atrial conduction, and body mass index: evidence from association, mediation, and Mendelian randomization models

    Get PDF
    BACKGROUND: Lipids are increasingly involved in cardiovascular risk prediction as potential proarrhythmic influencers. However, knowledge is limited about the specific mechanisms connecting lipid alterations with atrial conduction. METHODS: To shed light on this issue, we conducted a broad assessment of 151 sphingo- and phospholipids, measured using mass spectrometry, for association with atrial conduction, measured by P wave duration (PWD) from standard electrocardiograms, in the MICROS study (Microisolates in South Tyrol) (n=839). Causal pathways involving lipidomics, body mass index (BMI), and PWD were assessed using 2-sample Mendelian randomization analyses based on published genome-wide association studies of lipidomics (n=4034) and BMI (n=734 481), and genetic association analysis of PWD in 5 population-based studies (n=24 236). RESULTS: We identified an association with relative phosphatidylcholine 38:3 (%PC 38:3) concentration, which was replicated in the ORCADES (Orkney Complex Disease Study; n=951), with a pooled association across studies of 2.59 (95% CI, 1.3-3.9; P=1.1×10-4) ms PWD per mol% increase. While being independent of cholesterol, triglycerides, and glucose levels, the %PC 38:3-PWD association was mediated by BMI. Results supported a causal effect of BMI on both PWD ( P=8.3×10-5) and %PC 38:3 ( P=0.014). CONCLUSIONS: Increased %PC 38:3 levels are consistently associated with longer PWD, partly because of the confounding effect of BMI. The causal effect of BMI on PWD reinforces evidence of BMI's involvement into atrial electrical activity

    Rare and common genetic determinants of metabolic individuality and their effects on human health

    Get PDF
    Garrod’s concept of ‘chemical individuality’ has contributed to comprehension of the molecular origins of human diseases. Untargeted high-throughput metabolomic technologies provide an in-depth snapshot of human metabolism at scale. We studied the genetic architecture of the human plasma metabolome using 913 metabolites assayed in 19,994 individuals and identified 2,599 variant–metabolite associations (P < 1.25 × 10−11) within 330 genomic regions, with rare variants (minor allele frequency ≤ 1%) explaining 9.4% of associations. Jointly modeling metabolites in each region, we identified 423 regional, co-regulated, variant–metabolite clusters called genetically influenced metabotypes. We assigned causal genes for 62.4% of these genetically influenced metabotypes, providing new insights into fundamental metabolite physiology and clinical relevance, including metabolite-guided discovery of potential adverse drug effects (DPYD and SRD5A2). We show strong enrichment of inborn errors of metabolism-causing genes, with examples of metabolite associations and clinical phenotypes of non-pathogenic variant carriers matching characteristics of the inborn errors of metabolism. Systematic, phenotypic follow-up of metabolite-specific genetic scores revealed multiple potential etiological relationships

    Variation in the SERPINA6SERPINA1 locusalters morning plasma cortisol, hepatic corticosteroid binding globulin expression, gene expressionin peripheral tissues, and risk of cardiovascular disease

    Get PDF
    The stress hormone cortisol modulates fuel metabolism, cardiovascular homoeostasis, mood, inflammation and cognition. The CORtisol NETwork (CORNET) consortium previously identified a single locus associated with morning plasma cortisol. Identifying additional genetic variants that explain more of the variance in cortisol could provide new insights into cortisol biology and provide statistical power to test the causative role of cortisol in common diseases. The CORNET consortium extended its genome-wide association meta-analysis for morning plasma cortisol from 12,597 to 25,314 subjects and from ~2.2 M to ~7 M SNPs, in 17 population-based cohorts of European ancestries. We confirmed the genetic association with SERPINA6/SERPINA1. This locus contains genes encoding corticosteroid binding globulin (CBG) and α1-antitrypsin. Expression quantitative trait loci (eQTL) analyses undertaken in the STARNET cohort of 600 individuals showed that specific genetic variants within the SERPINA6/SERPINA1 locus influence expression of SERPINA6 rather than SERPINA1 in the liver. Moreover, trans-eQTL analysis demonstrated effects on adipose tissue gene expression, suggesting that variation
    corecore