107 research outputs found

    Coherent switching of semiconductor resonator solitons

    Full text link
    We demonstrate switching on and off of spatial solitons in a semiconductor microresonator by injection of light coherent with the background illumination. Evidence results that the formation of the solitons and their switching does not involve thermal processes.Comment: 3 pages, 5 figure

    Noise at a Fermi-edge singularity

    Get PDF
    We present noise measurements of self-assembled InAs quantum dots at high magnetic fields. In comparison to I-V characteristics at zero magnetic field we notice a strong current overshoot which is due to a Fermi-edge singularity. We observe an enhanced suppression in the shot noise power simultaneous to the current overshoot which is attributed to the electron-electron interaction in the Fermi-edge singularity

    Enhanced quantized current driven by surface acoustic waves

    Full text link
    We present the experimental realization of different approaches to increase the amount of quantized current which is driven by surface acoustic waves through split gate structures in a two dimensional electron gas. Samples with driving frequencies of up to 4.7 GHz have been fabricated without a deterioration of the precision of the current steps, and a parallelization of two channels with correspondingly doubled current values have been achieved. We discuss theoretical and technological limitations of these approaches for metrological applications as well as for quantum logics.Comment: 3pages, 4eps-figure

    Enhanced Shot Noise in Tunneling through a Stack of Coupled Quantum Dots

    Get PDF
    We have investigated the noise properties of the tunneling current through vertically coupled self-assembled InAs quantum dots. We observe super-Poissonian shot noise at low temperatures. For increased temperature this effect is suppressed. The super-Poissonian noise is explained by capacitive coupling between different stacks of quantum dots

    Tuning the onset voltage of resonant tunneling through InAs quantum dots by growth parameters

    Get PDF
    We investigated the size dependence of the ground state energy in self-assembled InAs quantum dots embedded in resonant tunneling diodes. Individual current steps observed in the current-voltage characteristics are attributed to resonant single-electron tunneling via the ground state of individual InAs quantum dots. The onset voltage of the first step observed is shown to decrease systematically from 200 mV to 0 with increasing InAs coverage. We relate this to a coverage-dependent size of InAs dots grown on AlAs. The results are confirmed by atomic force micrographs and photoluminescence experiments on reference samples.Comment: 3 pages, 3 figure

    Synchronized single electron emission from dynamical quantum dots

    Full text link
    We study synchronized quantized charge pumping through several dynamical quantum dots (QDs) driven by a single time modulated gate signal. We show that the main obstacle for synchronization being the lack of uniformity can be overcome by operating the QDs in the decay cascade regime. We discuss the mechanism responsible for lifting the stringent uniformity requirements. This enhanced functionality of dynamical QDs might find applications in nanoelectronics and quantum metrology.Comment: 4 pages, 3 figures, submitted to AP
    corecore