895 research outputs found

    Eighth Graders Explore Form and Function of Modern and Fossil Organisms

    Get PDF
    Arts integration into science has been shown to motivate students and promote long-term retention of content. To add to the literature addressing arts integration, an experiment was conducted with middle school students studying the anatomical similarities and differences between modern and fossil marine invertebrates and different types of extant insects. Eighth grade students participated in a counterbalanced-design, quasi-experimental study to determine if the integration of art into the science curriculum would influence student retention of content, enjoyment, motivation, and perceived learning toward learning science concepts supporting the Next Generation Science Standards including engineering-related concepts. The lessons addressed Life Science standard MS-LS4-2. Results showed that the integration of an art activity had a significant effect on knowledge retention favoring the experimental condition with a medium effect size on the posttest and a large effect on the distal posttest. Student enjoyment, motivation, and perceived learning also showed significant differences overall and specifically for enjoyment and for perceived learning favoring the experimental conditions of arts integration with a small effect size

    Examining Natural Selection by Sketching and Making Models of the Finches of the Galapagos Islands

    Get PDF
    This practical lesson describes how students in six eighth grade science classes participated in a lesson combining the National Core Arts Standards with the Next Generation Science Standards. The goal of the lesson was to provide visual representations of finch beak form and function so students could better understand genetic variation and how environmental pressures influence natural selection. Students sketched a finch with a large, medium, or small beak, corresponding to an experiment they had conducted with picking up different sizes of seeds with different sizes of binder clips. Using modeling with a variety of media, students created bird beaks based on information from online and text research. Students identified how each beak was related to the bird’s diet and made comparisons with the beaks of the other birds in the environment. In addition to their increased knowledge of natural selection, students voiced their enjoyment of the inclusion of art

    Mechanisms of MR/N024524/1Scarless Repair at Time of Menstruation: Insights From Mouse Models

    Get PDF
    The human endometrium is a remarkable tissue which may experience up to 400 cycles of hormone-driven proliferation, differentiation and breakdown during a woman's reproductive lifetime. During menstruation, when the luminal portion of tissue breaks down, it resembles a bloody wound with piecemeal shedding, exposure of underlying stroma and a strong inflammatory reaction. In the absence of pathology within a few days the integrity of the tissue is restored without formation of a scar and the endometrium is able to respond appropriately to subsequent endocrine signals in preparation for establishment of pregnancy if fertilization occurs. Understanding mechanisms regulating scarless repair of the endometrium is important both for design of therapies which can treat conditions where this is aberrant (heavy menstrual bleeding, fibroids, endometriosis, Asherman's syndrome) as well as to provide new information that might allow us to reduce fibrosis and scar formation in other tissues. Menstruation only occurs naturally in species that exhibit spontaneous stromal cell decidualization during the fertile cycle such as primates (including women) and the Spiny mouse. To take advantage of genetic models and detailed time course analysis, mouse models of endometrial shedding/repair involving hormonal manipulation, artificial induction of decidualization and hormone withdrawal have been developed and refined. These models are useful in modeling dynamic changes across the time course of repair and have recapitulated key features of endometrial repair in women including local hypoxia and immune cell recruitment. In this review we will consider the evidence that scarless repair of endometrial tissue involves changes in stromal cell function including mesenchyme to epithelial transition, epithelial cell proliferation and multiple populations of immune cells. Processes contributing to endometrial fibrosis (Asherman's syndrome) as well as scarless repair of other tissues including skin and oral mucosa are compared to that of menstrual repair
    • …
    corecore