69 research outputs found

    Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea (Cajanus spp.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pigeonpea [<it>Cajanus cajan </it>(L.) Millsp.] is an important legume crop of rainfed agriculture. Despite of concerted research efforts directed to pigeonpea improvement, stagnated productivity of pigeonpea during last several decades may be accounted to prevalence of various biotic and abiotic constraints and the situation is exacerbated by availability of inadequate genomic resources to undertake any molecular breeding programme for accelerated crop improvement. With the objective of enhancing genomic resources for pigeonpea, this study reports for the first time, large scale development of SSR markers from BAC-end sequences and their subsequent use for genetic mapping and hybridity testing in pigeonpea.</p> <p>Results</p> <p>A set of 88,860 BAC (bacterial artificial chromosome)-end sequences (BESs) were generated after constructing two BAC libraries by using <it>Hin</it>dIII (34,560 clones) and <it>Bam</it>HI (34,560 clones) restriction enzymes. Clustering based on sequence identity of BESs yielded a set of >52K non-redundant sequences, comprising 35 Mbp or >4% of the pigeonpea genome. These sequences were analyzed to develop annotation lists and subdivide the BESs into genome fractions (e.g., genes, retroelements, transpons and non-annotated sequences). Parallel analysis of BESs for microsatellites or simple sequence repeats (SSRs) identified 18,149 SSRs, from which a set of 6,212 SSRs were selected for further analysis. A total of 3,072 novel SSR primer pairs were synthesized and tested for length polymorphism on a set of 22 parental genotypes of 13 mapping populations segregating for traits of interest. In total, we identified 842 polymorphic SSR markers that will have utility in pigeonpea improvement. Based on these markers, the <it>first </it>SSR-based genetic map comprising of 239 loci was developed for this previously uncharacterized genome. Utility of developed SSR markers was also demonstrated by identifying a set of 42 markers each for two hybrids (ICPH 2671 and ICPH 2438) for genetic purity assessment in commercial hybrid breeding programme.</p> <p>Conclusion</p> <p>In summary, while BAC libraries and BESs should be useful for genomics studies, BES-SSR markers, and the genetic map should be very useful for linking the genetic map with a future physical map as well as for molecular breeding in pigeonpea.</p

    Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Higher plants exhibit remarkable phenotypic plasticity allowing them to adapt to an extensive range of environmental conditions. Sorghum is a cereal crop that exhibits exceptional tolerance to adverse conditions, in particular, water-limiting environments. This study utilized next generation sequencing (NGS) technology to examine the transcriptome of sorghum plants challenged with osmotic stress and exogenous abscisic acid (ABA) in order to elucidate genes and gene networks that contribute to sorghum's tolerance to water-limiting environments with a long-term aim of developing strategies to improve plant productivity under drought.</p> <p>Results</p> <p>RNA-Seq results revealed transcriptional activity of 28,335 unique genes from sorghum root and shoot tissues subjected to polyethylene glycol (PEG)-induced osmotic stress or exogenous ABA. Differential gene expression analyses in response to osmotic stress and ABA revealed a strong interplay among various metabolic pathways including abscisic acid and 13-lipoxygenase, salicylic acid, jasmonic acid, and plant defense pathways. Transcription factor analysis indicated that groups of genes may be co-regulated by similar regulatory sequences to which the expressed transcription factors bind. We successfully exploited the data presented here in conjunction with published transcriptome analyses for rice, maize, and Arabidopsis to discover more than 50 differentially expressed, drought-responsive gene orthologs for which no function had been previously ascribed.</p> <p>Conclusions</p> <p>The present study provides an initial assemblage of sorghum genes and gene networks regulated by osmotic stress and hormonal treatment. We are providing an RNA-Seq data set and an initial collection of transcription factors, which offer a preliminary look into the cascade of global gene expression patterns that arise in a drought tolerant crop subjected to abiotic stress. These resources will allow scientists to query gene expression and functional annotation in response to drought.</p

    Identifying water stress-response mechanisms in citrus by in silico transcriptome analysis

    Full text link

    Regeneration of late leaf spot-resistant groundnut plants from Cercosporidium personatum culture filtrate-treated callus

    No full text
    Cotyledon callus cultures of groundnut (Arachis hypogaea L.) derived from tikka late leaf spot disease-susceptible and resistant genotypes were exposed to various concentrations of fungal culture filtrate (FCF) of Cercosporidium personatum, the causal fungal agent of tikka late leaf spot disease. Fresh weight and cell viability of calli were determined after exposure to various concentrations of FCF. Sensitive calli have failed to increase in fresh weight and lost viability after exposure to media containing the FCF whereas insensitive calli retained growth and maintained viability similar to controls, viz, calli not exposed to FCF, Insensitive calli were selected by culturing on growth medium containing various concentrations of the FCF. Resistant calli obtained by selection survived three subcultures under the same conditions and were used for plantlet regeneration, Regenerated plants when transferred to soil-sand mixture in plastic cups and subsequently shifted to field conditions, set few viable seeds. Plants of R-2 generation exhibited enhanced resistance to tikka late leaf spot disease

    Genome wide analysis and comparative docking studies of new diaryl furan derivatives against human cyclooxygenase-2, lipoxygenase, thromboxane synthase and prostacyclin synthase enzymes involved in inflammatory pathway

    No full text
    In an effort to develop potent anti-inflammatory and antithrombotic drugs, a series of new 4-(2-phenyltetrahydrofuran-3-yl) benzene sulfonamide analogs were designed and docked against homology models of human cyclooxygenase-2 (COX-2), lipoxygenase and thromboxane synthase enzymes built using MODELLER 7v7 software and refined by molecular dynamics for 2 ns in a solvated layer. Validation of these homology models by procheck, verify-3D and ERRAT programs revealed that these models are highly reliable. Docking studies of 4-(2-phenyltetrahydrofuran-3-yl) benzene sulfonamide analogs designed by substituting different chemical groups on benzene rings replacing 1H pyrazole in celecoxib with five membered thiophene, furan, 1H pyrrole, 1H imidazole, thiazole and 1,3-oxazole showed that diaryl furan molecules showed good binding affinity towards mouse COX-2. Further, docking studies of diaryl furan derivatives are likely to have superior thromboxane synthase and COX-2 selectivity. Docking studies against site directed mutagenesis of Arg120Ala, Ser530Ala, Ser530Met and Tyr355Phe enzymes displayed the effect of inhibition of COX-2. Drug likeliness and activity decay for these inhibitors showed that these molecules act as best drugs at very low concentrations.status: publishe

    Experimental validation and docking studies of flavone derivatives on aldose reductase involved in diabetic retinopathy, neuropathy, and nephropathy

    No full text
    The enzyme aldoreductase which plays an important role in pathogenesis of diabetic retinopathy, neuropathy, and nephropathy was purified from bovine lens, and its inhibitory activity was studied with the synthesized flavone derivatives 1-(2-hydroxyphenyl)ethanone as the starting material. Experimental study revealed that 2-chloroflavone shows less inhibitory activity of 60-70% than other flavones used in the study. To validate experimental results computationally, docking studies of new flavone derivatives synthesized were performed with the enzyme aldose reductase, and the results indicate that 3-iodo, 4-methyl, 5-chloroflavone and 2-chloroflavone bind with higher and lesser affinities. Docking studies with site directed mutagenesis of Val47Ile, Tyr48His, Pro121Phe, Trp219Tyr, Cys298Ala, Leu300Pro, Ser302Arg, and Cys303Asp of the enzyme altered the inhibition activity of aldose reductase. The regression value (R (2)) of 0.81 between the docking scores of the known inhibitors and the experimental logIC(50) indicates the reliability of the docking studies. Biological activity and carcinogenic properties predict that 3-iodo, 4-methyl, 5-chloroflavone is the best flavone inhibitor against aldose reductase.status: publishe
    corecore