15,280 research outputs found

    Evidence of breakdown of the spin symmetry in diluted 2D electron gases

    Full text link
    Recent claims of an experimental demonstration of spontaneous spin polarisation in dilute electron gases \cite{young99} revived long standing theoretical discussions \cite{ceper99,bloch}. In two dimensions, the stabilisation of a ferromagnetic fluid might be hindered by the occurrence of the metal-insulator transition at low densities \cite{abra79}. To circumvent localisation in the two-dimensional electron gas (2DEG) we investigated the low populated second electron subband, where the disorder potential is mainly screened by the high density of the first subband. This letter reports on the breakdown of the spin symmetry in a 2DEG, revealed by the abrupt enhancement of the exchange and correlation terms of the Coulomb interaction, as determined from the energies of the collective charge and spin excitations. Inelastic light scattering experiments and calculations within the time-dependent local spin-density approximation give strong evidence for the existence of a ferromagnetic ground state in the diluted regime.Comment: 4 pages, 4 figures, Revte

    An important role for Myb-MuvB and its target gene KIF23 in a mouse model of lung adenocarcinoma

    Get PDF
    The conserved Myb-MuvB (MMB) multiprotein complex has an important role in transcriptional activation of mitotic genes. MMB target genes are overexpressed in several different cancer types and their elevated expression is associated with an advanced tumor state and a poor prognosis. This suggests that MMB could contribute to tumorigenesis by mediating overexpression of mitotic genes. However, although MMB has been extensively characterized biochemically, the requirement for MMB in tumorigenesis in vivo has not been investigated. Here we demonstrate that MMB is required for tumor formation in a mouse model of lung cancer driven by oncogenic K-RAS. We also identify a requirement for the mitotic kinesin KIF23, a key target gene of MMB, in tumorigenesis. RNA interference-mediated depletion of KIF23 inhibited lung tumor formation in vivo and induced apoptosis in lung cancer cell lines. Our results suggest that inhibition of KIF23 could be a strategy for treatment of lung cancer

    Modelling Social Structures and Hierarchies in Language Evolution

    Full text link
    Language evolution might have preferred certain prior social configurations over others. Experiments conducted with models of different social structures (varying subgroup interactions and the role of a dominant interlocutor) suggest that having isolated agent groups rather than an interconnected agent is more advantageous for the emergence of a social communication system. Distinctive groups that are closely connected by communication yield systems less like natural language than fully isolated groups inhabiting the same world. Furthermore, the addition of a dominant male who is asymmetrically favoured as a hearer, and equally likely to be a speaker has no positive influence on the disjoint groups.Comment: 14 pages, 3 figures, 1 table. In proceedings of AI-2010, The Thirtieth SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, Cambridge, England, UK, 14-16 December 201

    Broadband multi-wavelength campaign on PKS 2005-489

    Full text link
    The spectral energy distribution (SED) of high-frequency peaked BL Lac objects (HBL) is characterized by two peaks: one in the UV-X-ray and one in the GeV-TeV regime. An interesting object for analyzing these broadband characteristics is PKS 2005-489, which in 2004 showed the softest TeV spectrum ever measured. In 2009, a multi-wavelength campaign has been conducted with, for the first time, simultaneous observations by H.E.S.S. (TeV), Fermi/LAT (GeV), RXTE (keV), Swift (keV, UV, optical) and ATOM (optical) to cover the two peaks of the SED. During this campaign PKS 2005-489 underwent a high state in all wavebands which gives the opportunity to study in detail the emission processes of a high state of this interesting HBL.Comment: 2009 Fermi Symposium; eConf Proceedings C09112

    Composition of the Innermost Core Collapse Supernova Ejecta

    Full text link
    With presently known input physics and computer simulations in 1D, a self-consistent treatment of core collapse supernovae does not yet lead to successful explosions, while 2D models show some promise. Thus, there are strong indications that the delayed neutrino mechanism works combined with a multi-D convection treatment for unstable layers. On the other hand there is a need to provide correct nucleosynthesis abundances for the progressing field of galactic evolution and observations of low metallicity stars. The innermost ejecta is directly affected by the explosion mechanism, i.e. most strongly the yields of Fe-group nuclei for which an induced piston or thermal bomb treatment will not provide the correct yields because the effect of neutrino interactions is not included. We apply parameterized variations to the neutrino scattering cross sections and alternatively, parameterized variations are applied to the neutrino absorption cross sections on nucleons in the ``gain region''. We find that both measures lead to similar results, causing explosions and a Ye>0.5 in the innermost ejected layers, due to the combined effect of a short weak interaction time scale and a negligible electron degeneracy, unveiling the proton-neutron mass difference. We include all weak interactions (electron and positron capture, beta-decay, neutrino and antineutrino capture on nuclei, and neutrino and antineutrino capture on nucleons) and present first nucleosynthesis results for these innermost ejected layers to discuss how they improve predictions for Fe-group nuclei. The proton-rich environment results in enhanced abundances of 45Sc, 49Ti, and 64Zn as requested by chemical evolution studies and observations of low metallicity stars as well as appreciable production of nuclei in the mass range up to A=80.Comment: 13 pages, 8 figures. Final versio

    Effect of spin orbit scattering on the magnetic and superconducting properties of nearly ferromagnetic metals: application to granular Pt

    Full text link
    We calculate the effect of scattering on the static, exchange enhanced, spin susceptibility and show that in particular spin orbit scattering leads to a reduction of the giant moments and spin glass freezing temperature due to dilute magnetic impurities. The harmful spin fluctuation contribution to the intra-grain pairing interaction is strongly reduced opening the way for BCS superconductivity. We are thus able to explain the superconducting and magnetic properties recently observed in granular Pt as due to scattering effects in single small grains.Comment: 9 pages 3 figures, accepted for publication in Phys. Rev. Letter

    Fission and cluster decay of 76^{76}Sr nucleus in the ground-state and formed in heavy-ion reactions

    Get PDF
    Calculations for fission and cluster decay of 76Sr^{76}Sr are presented for this nucleus to be in its ground-state or formed as an excited compound system in heavy-ion reactions. The predicted mass distribution, for the dynamical collective mass transfer process assumed for fission of 76Sr^{76}Sr, is clearly asymmetric, favouring α\alpha -nuclei. Cluster decay is studied within a preformed cluster model, both for ground-state to ground-state decays and from excited compound system to the ground-state(s) or excited states(s) of the fragments.Comment: 14 pages LaTeX, 5 Figures available upon request Submitted to Phys. Rev.

    The value of what’s to come: Neural mechanisms coupling prediction error and the utility of anticipation

    Get PDF
    Having something to look forward to is a keystone of well-being. Anticipation of future reward, such as an upcoming vacation, can often be more gratifying than the experience itself. Theories suggest the utility of anticipation underpins various behaviors, ranging from beneficial information-seeking to harmful addiction. However, how neural systems compute anticipatory utility remains unclear. We analyzed the brain activity of human participants as they performed a task involving choosing whether to receive information predictive of future pleasant outcomes. Using a computational model, we show three brain regions orchestrate anticipatory utility. Specifically, ventromedial prefrontal cortex tracks the value of anticipatory utility, dopaminergic midbrain correlates with information that enhances anticipation, while sustained hippocampal activity mediates a functional coupling between these regions. Our findings suggest a previously unidentified neural underpinning for anticipation’s influence over decision-making and unify a range of phenomena associated with risk and time-delay preference

    Observables for spacetimes with two Killing field symmetries

    Full text link
    The Einstein equations for spacetimes with two commuting spacelike Killing field symmetries are studied from a Hamiltonian point of view. The complexified Ashtekar canonical variables are used, and the symmetry reduction is performed directly in the Hamiltonian theory. The reduced system corresponds to the field equations of the SL(2,R) chiral model with additional constraints. On the classical phase space, a method of obtaining an infinite number of constants of the motion, or observables, is given. The procedure involves writing the Hamiltonian evolution equations as a single `zero curvature' equation, and then employing techniques used in the study of two dimensional integrable models. Two infinite sets of observables are obtained explicitly as functionals of the phase space variables. One set carries sl(2,R) Lie algebra indices and forms an infinite dimensional Poisson algebra, while the other is formed from traces of SL(2,R) holonomies that commute with one another. The restriction of the (complex) observables to the Euclidean and Lorentzian sectors is discussed. It is also shown that the sl(2,R) observables can be associated with a solution generating technique which is linked to that given by Geroch.Comment: 23 pages (LateX-RevTeX), Alberta-Thy-55-9
    • 

    corecore