11 research outputs found

    Thrombosis in vasculitis: from pathogenesis to treatment

    Get PDF
    In recent years, the relationship between inflammation and thrombosis has been deeply investigated and it is now clear that immune and coagulation systems are functionally interconnected. Inflammation-induced thrombosis is by now considered a feature not only of autoimmune rheumatic diseases, but also of systemic vasculitides such as Behçet’s syndrome, ANCA-associated vasculitis or giant cells arteritis, especially during active disease. These findings have important consequences in terms of management and treatment. Indeed, Behçet’syndrome requires immunosuppressive agents for vascular involvement rather than anticoagulation or antiplatelet therapy, and it is conceivable that also in ANCA-associated vasculitis or large vessel-vasculitis an aggressive anti-inflammatory treatment during active disease could reduce the risk of thrombotic events in early stages. In this review we discuss thrombosis in vasculitides, especially in Behçet’s syndrome, ANCA-associated vasculitis and large-vessel vasculitis, and provide pathogenetic and clinical clues for the different specialists involved in the care of these patients

    Serum interleukin-6, procalcitonin and C-reactive protein levels in subjects with active Behcet's disease

    No full text
    Background Erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and cytokines, including serum interleukin (IL)-6, IL-8 and IL-10, and turnout necrosis factor-alpha (TNF-alpha) have been proposed as disease activity markers in Behcet's disease (BD), although studies have shown conflicting results for IL-6. Serum procalcitonin (PCT) levels in active 1313 have not yet been investigated

    Identification of possible pathogenic pathways in Behçet's disease using genome-wide association study data from two different populations

    No full text
    Behçet's disease (BD) is a multi-system inflammatory disorder of unknown etiology. Two recent genome-wide association studies (GWASs) of BD confirmed a strong association with the MHC class I region and identified two non-HLA common genetic variations. In complex diseases, multiple factors may target different sets of genes in the same pathway and thus may cause the same disease phenotype. We therefore hypothesized that identification of disease-associated pathways is critical to elucidate mechanisms underlying BD, and those pathways may be conserved within and across populations. To identify the disease-associated pathways, we developed a novel methodology that combines nominally significant evidence of genetic association with current knowledge of biochemical pathways, protein-protein interaction networks, and functional information of selected SNPs. Using this methodology, we searched for the disease-related pathways in two BD GWASs in Turkish and Japanese case-control groups. We found that 6 of the top 10 identified pathways in both populations were overlapping, even though there were few significantly conserved SNPs/genes within and between populations. The probability of random occurrence of such an event was 2.24E-39. These shared pathways were focal adhesion, MAPK signaling, TGF-β signaling, ECM-receptor interaction, complement and coagulation cascades, and proteasome pathways. Even though each individual has a unique combination of factors involved in their disease development, the targeted pathways are expected to be mostly the same. Hence, the identification of shared pathways between the Turkish and the Japanese patients using GWAS data may help further elucidate the inflammatory mechanisms in BD pathogenesis
    corecore