1,072 research outputs found

    General Localization Lengths for Two Interacting Particles in a Disordered Chain

    Full text link
    The propagation of an interacting particle pair in a disordered chain is characterized by a set of localization lengths which we define. The localization lengths are computed by a new decimation algorithm and provide a more comprehensive picture of the two-particle propagation. We find that the interaction delocalizes predominantly the center-of-mass motion of the pair and use our approach to propose a consistent interpretation of the discrepancies between previous numerical results.Comment: 4 pages, 2 epsi figure

    Chaos and Interacting Electrons in Ballistic Quantum Dots

    Full text link
    We show that the classical dynamics of independent particles can determine the quantum properties of interacting electrons in the ballistic regime. This connection is established using diagrammatic perturbation theory and semiclassical finite-temperature Green functions. Specifically, the orbital magnetism is greatly enhanced over the Landau susceptibility by the combined effects of interactions and finite size. The presence of families of periodic orbits in regular systems makes their susceptibility parametrically larger than that of chaotic systems, a difference which emerges from correlation terms.Comment: 4 pages, revtex, includes 3 postscript fig

    Semiclassical Approach to Orbital Magnetism of Interacting Diffusive Quantum Systems

    Full text link
    We study interaction effects on the orbital magnetism of diffusive mesoscopic quantum systems. By combining many-body perturbation theory with semiclassical techniques, we show that the interaction contribution to the ensemble averaged quantum thermodynamic potential can be reduced to an essentially classical operator. We compute the magnetic response of disordered rings and dots for diffusive classical dynamics. Our semiclassical approach reproduces the results of previous diagrammatic quantum calculations.Comment: 8 pages, revtex, includes 1 postscript fi

    Current-induced nonequilibrium vibrations in single-molecule devices

    Full text link
    Finite-bias electron transport through single molecules generally induces nonequilibrium molecular vibrations (phonons). By a mapping to a Fokker-Planck equation, we obtain analytical scaling forms for the nonequilibrium phonon distribution in the limit of weak electron-phonon coupling λ\lambda within a minimal model. Remarkably, the width of the phonon distribution diverges as λα\sim\lambda^{-\alpha} when the coupling decreases, with voltage-dependent, non-integer exponents α\alpha. This implies a breakdown of perturbation theory in the electron-phonon coupling for fully developed nonequilibrium. We also discuss possible experimental implications of this result such as current-induced dissociation of molecules.Comment: 7 pages, 4 figures; revised and extended version published in Phys. Rev.

    Localization Properties of Two Interacting Electrons in a Disordered Quasi One-Dimensional Potential

    Full text link
    We study the transport properties of two electrons in a quasi one-dimensional disordered wire. The electrons are subject to both, a disorder potential and a short range two-body interaction. Using the approach developed by Iida et al. [ Ann. Phys. (N.Y.) 200 (1990) 219 ], the supersymmetry technique, and a suitable truncation of Hilbert space, we work out the two-point correlation function in the framework of a non-linear sigma model. We study the loop corrections to arbitrary order. We obtain a remarkably simple and physically transparent expression for the change of the localization length caused by the two-body interaction.Comment: 10 page

    Level Statistics and Localization for Two Interacting Particles in a Random Potential

    Full text link
    We consider two particles with a local interaction UU in a random potential at a scale L1L_1 (the one particle localization length). A simplified description is provided by a Gaussian matrix ensemble with a preferential basis. We define the symmetry breaking parameter μU2\mu \propto U^{-2} associated to the statistical invariance under change of basis. We show that the Wigner-Dyson rigidity of the energy levels is maintained up to an energy EμE_{\mu}. We find that Eμ1/μE_{\mu} \propto 1/\sqrt{\mu} when Γ\Gamma (the inverse lifetime of the states of the preferential basis) is smaller than Δ2\Delta_2 (the level spacing), and Eμ1/μE_{\mu} \propto 1/\mu when Γ>Δ2\Gamma > \Delta_2. This implies that the two-particle localization length L2L_2 first increases as U|U| before eventually behaving as U2U^2.Comment: 4 pages REVTEX, 4 Figures EPS, UUENCODE

    Interaction-Induced Magnetization of the Two-Dimensional Electron Gas

    Full text link
    We consider the contribution of electron-electron interactions to the orbital magnetization of a two-dimensional electron gas, focusing on the ballistic limit in the regime of negligible Landau-level spacing. This regime can be described by combining diagrammatic perturbation theory with semiclassical techniques. At sufficiently low temperatures, the interaction-induced magnetization overwhelms the Landau and Pauli contributions. Curiously, the interaction-induced magnetization is third-order in the (renormalized) Coulomb interaction. We give a simple interpretation of this effect in terms of classical paths using a renormalization argument: a polygon must have at least three sides in order to enclose area. To leading order in the renormalized interaction, the renormalization argument gives exactly the same result as the full treatment.Comment: 11 pages including 4 ps figures; uses revtex and epsf.st

    Effect of noise for two interacting particles in a random potential

    Full text link
    We investigated the effect of noise on propagation of two interacting particles pairs in a quasi one--dimensional random potential. It is shown that pair diffusion is strongly enhanced by short range interaction comparing with the non--interacting case.Comment: 8 Latex pages + 3 postscript figures uu- compressed submitted to Europhysics Letter

    Flexural phonons in free-standing graphene

    Get PDF
    Rotation and reflection symmetries impose that out-of-plane (flexural) phonons of free-standing graphene membranes have a quadratic dispersion at long wavelength and can be excited by charge carriers in pairs only. As a result, we find that flexural phonons dominate the phonon contribution to the resistivity ρ\rho below a crossover temperature T_x where we obtain an anomalous temperature dependence ρT5/2lnT\rho\propto T^{5/2}_{}\ln T. The logarithmic factor arises from renormalizations of the flexural phonon dispersion due to coupling between bending and stretching degrees of freedom of the membrane.Comment: 4 pages, 2 figure

    Thermopower of Single-Molecule Devices

    Full text link
    We investigate the thermopower of single molecules weakly coupled to metallic leads. We model the molecule in terms of the relevant electronic orbitals coupled to phonons corresponding to both internal vibrations and to oscillations of the molecule as a whole. The thermopower is computed by means of rate equations including both sequential-tunneling and cotunneling processes. Under certain conditions, the thermopower allows one to access the electronic and phononic excitation spectrum of the molecule in a linear-response measurement. In particular, we find that the phonon features are more pronounced for weak lead-molecule coupling. This way of measuring the excitation spectrum is less invasive than the more conventional current-voltage characteristic, which, by contrast, probes the system far from equilibrium.Comment: 13 pages, 7 figures included; minor changes, version published in PR
    corecore