6 research outputs found

    Pre-symptomatic detection of Plasmopara viticola infection in grapevine leaves using chlorophyll fluorescence imaging

    No full text
    Plasmopara viticola is an economically important pathogen of grapevine. Early detection of P. viticola infection can lead to improved fungicide treatment. Our study aimed to determine whether chlorophyll fluorescence (Chl-F) imaging can be used to reveal early stages of P. viticola infection under conditions similar to those occurring in commercial vineyards. Maximum (F(V)/F(M)) and effective quantum yield of photosystem II (I broken vertical bar(PSII)) were identified as the most sensitive reporters of the infection. Heterogeneous distribution of F(V)/F(M) and I broken vertical bar(PSII) in artificially inoculated leaves was associated with the presence of the developing mycelium 3 days before the occurrence of visible symptoms and 5 days before the release of spores. Significant changes of F(V)/F(M) and I broken vertical bar(PSII) were spatially coincident with localised spots of inoculation across the leaf lamina. Reduction of F(V)/F(M) was restricted to the leaf area that later yielded sporulation, while the area with significantly lower I broken vertical bar(PSII) was larger and probably reflected the leaf parts in which photosynthesis was impaired. Our results indicate that Chl-F can be used for the early detection of P. viticola infection. Because P. viticola does not expand systemically in the host tissues and the effects of infection are localised, Chl-F imaging at high resolution is necessary to reveal the disease in the field

    Environmental factors correlated with the metabolite profile of Vitis vinifera cv. Pinot noir berry skins along a european latitudinal gradient

    Get PDF
    Mature berries of Pinot Noir grapevines were sampled across a latitudinal gradient in Europe, from southern Spain to central Germany. Our aim was to study the influence of latitude-dependent environmental factors on the metabolite composition (mainly phenolic compounds) of berry skins. Solar radiation variables were positively correlated with flavonols and flavanonols and, to a lesser extent, with stilbenes and cinnamic acids. The daily means of global and erythematic UV solar radiation over long periods (bud break-veraison, bud break-harvest, and veraison-harvest), and the doses and daily means in shorter development periods (5-10 days before veraison and harvest) were the variables best correlated with the phenolic profile. The ratio between trihydroxylated and monohydroxylated flavonols, which was positively correlated with antioxidant capacity, was the berry skin variable best correlated with those radiation variables. Total flavanols and total anthocyanins did not show any correlation with radiation variables. Air temperature, degree days, rainfall, and aridity indices showed fewer correlations with metabolite contents than radiation. Moreover, the latter correlations were restricted to the period veraison-harvest, where radiation, temperature, and water availability variables were correlated, making it difficult to separate the possible individual effects of each type of variable. The data show that managing environmental factors, in particular global and UV radiation, through cultural practices during specific development periods, can be useful to promote the synthesis of valuable nutraceuticals and metabolites that influence wine quality
    corecore