80 research outputs found
Mapping Cosmic Dawn and Reionization: Challenges and Synergies
Cosmic dawn and the Epoch of Reionization (EoR) are among the least explored
observational eras in cosmology: a time at which the first galaxies and
supermassive black holes formed and reionized the cold, neutral Universe of the
post-recombination era. With current instruments, only a handful of the
brightest galaxies and quasars from that time are detectable as individual
objects, due to their extreme distances. Fortunately, a multitude of
multi-wavelength intensity mapping measurements, ranging from the redshifted 21
cm background in the radio to the unresolved X-ray background, contain a
plethora of synergistic information about this elusive era. The coming decade
will likely see direct detections of inhomogenous reionization with CMB and 21
cm observations, and a slew of other probes covering overlapping areas and
complementary physical processes will provide crucial additional information
and cross-validation. To maximize scientific discovery and return on
investment, coordinated survey planning and joint data analysis should be a
high priority, closely coupled to computational models and theoretical
predictions.Comment: 5 pages, 1 figure, submitted to the Astro2020 Decadal Survey Science
White Paper cal
Hydrogen Epoch of Reionization Array (HERA)
The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to
measure 21 cm emission from the primordial intergalactic medium (IGM)
throughout cosmic reionization (), and to explore earlier epochs of our
Cosmic Dawn (). During these epochs, early stars and black holes
heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is
designed to characterize the evolution of the 21 cm power spectrum to constrain
the timing and morphology of reionization, the properties of the first
galaxies, the evolution of large-scale structure, and the early sources of
heating. The full HERA instrument will be a 350-element interferometer in South
Africa consisting of 14-m parabolic dishes observing from 50 to 250 MHz.
Currently, 19 dishes have been deployed on site and the next 18 are under
construction. HERA has been designated as an SKA Precursor instrument.
In this paper, we summarize HERA's scientific context and provide forecasts
for its key science results. After reviewing the current state of the art in
foreground mitigation, we use the delay-spectrum technique to motivate
high-level performance requirements for the HERA instrument. Next, we present
the HERA instrument design, along with the subsystem specifications that ensure
that HERA meets its performance requirements. Finally, we summarize the
schedule and status of the project. We conclude by suggesting that, given the
realities of foreground contamination, current-generation 21 cm instruments are
approaching their sensitivity limits. HERA is designed to bring both the
sensitivity and the precision to deliver its primary science on the basis of
proven foreground filtering techniques, while developing new subtraction
techniques to unlock new capabilities. The result will be a major step toward
realizing the widely recognized scientific potential of 21 cm cosmology.Comment: 26 pages, 24 figures, 2 table
A Roadmap for Astrophysics and Cosmology with High-Redshift 21 cm Intensity Mapping
In this white paper, we lay out a US roadmap for high-redshift 21 cm
cosmology (30 < z < 6) in the 2020s. Beginning with the currently-funded HERA
and MWA Phase II projects and advancing through the decade with a coordinated
program of small-scale instrumentation, software, and analysis projects
targeting technology development, this roadmap incorporates our current best
understanding of the systematics confronting 21 cm cosmology into a plan for
overcoming them, enabling next-generation, mid-scale 21 cm arrays to be
proposed late in the decade. Submitted for consideration by the Astro2020
Decadal Survey Program Panel for Radio, Millimeter, and Submillimeter
Observations from the Ground as a Medium-Sized Project.Comment: 10 pages (plus a cover page and references), 6 figures. Submitted as
a APC White Paper for Astro202
Mapping Cosmic Dawn and Reionization: Challenges and Synergies:Astro2020 Science White Paper
Cosmic dawn and the Epoch of Reionization are among the least explored observational eras in cosmology. To maximize scientific discovery and return on investment, coordinated survey planning and joint data analysis from experiments probing this epoch should be a high priority, closely coupled to the computational models and theoretical predictions. <p/
- âŠ