929 research outputs found

    Chlamydia trachomatis infection in early neonatal period

    Get PDF
    BACKGROUND: The clinical characteristics of Chlamydia trachomatis respiratory tract infections in Japanese neonates were investigated. METHODS: Clinical, laboratory and microbiological characteristics of five infants with pneumonia due to C. trachomatis in early neonatal period were analyzed. RESULTS: Only C. trachomatis was identified in 4 infants. Both C. trachomatis and cytomegalovirus was identified in one. Wheezing, tachypnea and cyanosis were common in infants. Mothers of five infants had negative chlamydial EIAs at 20 weeks of gestation. CONCLUSIONS: We identified five cases of C. trachomatis respiratory tract infections in early neonatal period with the possibility of intrauterine infection. Targeted screening, early diagnosis, and effective treatment of perinatal and neonatal chlamydial infections seems to be necessar

    Valley polarization assisted spin polarization in two dimensions

    Get PDF
    International audienceValleytronics is rapidly emerging as an exciting area of basic and applied research. In two dimensional systems, valley polarisation can dramatically modify physical properties through electron-electron interactions as demonstrated by such phenomena as the fractional quantum Hall effect and the metal-insulator transition. Here, we address the electrons' spin alignment in a magnetic field in silicon-on-insulator quantum wells under valley polarisation. In stark contrast to expectations from a non-interacting model, we show experimentally that less magnetic field can be required to fully spin polarise a valley-polarised system than a valley-degenerate one. Furthermore, we show that these observations are quantitatively described by parameter free ab initio quantum Monte Carlo simulations. We interpret the results as a manifestation of the greater stability of the spin and valley degenerate system against ferromagnetic instability and Wigner crystalisation which in turn suggests the existence of a new strongly correlated electron liquid at low electron densities

    Impact of valley polarization on the resistivity in two dimensions

    Get PDF

    Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling

    Get PDF
    Large brain size is one of the defining characteristics of modern humans. Seckel syndrome (MIM 210600), a disorder of markedly reduced brain and body size, is associated with defective ATR-dependent DNA damage signaling. Only a single hypomorphic mutation of ATR has been identified in this genetically heterogeneous condition. We now report that mutations in the gene encoding pericentrin (PCNT)--resulting in the loss of pericentrin from the centrosome, where it has key functions anchoring both structural and regulatory proteins--also cause Seckel syndrome. Furthermore, we find that cells of individuals with Seckel syndrome due to mutations in PCNT (PCNT-Seckel) have defects in ATR-dependent checkpoint signaling, providing the first evidence linking a structural centrosomal protein with DNA damage signaling. These findings also suggest that other known microcephaly genes implicated in either DNA repair responses or centrosomal function may act in common developmental pathways determining human brain and body size
    corecore