945 research outputs found

    Interaction of Two Adjacent Structures Coupled by Inerter-based System considering Soil Conditions

    Get PDF
    The inerter-based systems have proven to be effective for vibration control of adjacent structures. The interaction through the soil medium between adjacent structures in urban areas is generally accepted. However, existing studies concerning the inerter-based adjacent structures are primarily based on the assumption of a fixed base, without considering the inevitable interaction. To address this issue, this study incorporated the soil effects into the theoretical analysis of adjacent structures interconnected by an inerter system, and correspondingly develops an optimal design framework for such system. Employing a classic discrete model for structures and soil, the interaction behavior between inerter-based adjacent structures and soil was extensively studied in a comparative analysis. Based on the revealed interaction phenomena, the need for considering the soil condition in the design of an inerter system for adjacent structures was addressed, and a performance-demand-based optimal design framework was developed. The results indicated that for inerter-based adjacent structures spaced closely, the coupled interaction effect of soil and structure requires careful consideration, especially in soft soil conditions. Owing to the soil effects, the inerter system exhibited a weakened effectiveness for displacement reduction. A larger inner deformation of the inerter system is required to meet the demand for energy dissipation. With consideration of the soil condition, the proposed design method can satisfy the pre-specified target displacement demands for adjacent structures, simultaneously optimizing the control cost as an economical solution

    The Impact of Temperature on Physical Activity Levels During a 12-Week Walking Intervention

    Get PDF
    Please view abstract in the attached PDF file

    Induction of Colonic Aberrant Crypts in Mice by Feeding Apparent N-Nitroso Compounds Derived From Hot Dogs

    Get PDF
    Nitrite-preserved meats (e.g., hot dogs) may help cause colon cancer because they contain N-nitroso compounds. We tested whether purified hot-dog-derived total apparent N-nitroso compounds (ANC) could induce colonic aberrant crypts, which are putative precursors of colon cancer. We purified ANC precursors in hot dogs and nitrosated them to produce ANC. In preliminary tests, CF1 mice received 1 or 3 i.p. injections of 5mg azoxymethane (AOM)/kg. In Experiments 1 and 2, female A/J mice received ANC in diet. In Experiment 1, ANC dose initially dropped sharply because the ANC precursors had mostly decomposed but, later in Experiment 1 and throughout Experiment 2, ANC remained at 85 nmol/g diet. Mice were killed after 8 (AOM tests) or 17–34 (ANC tests) wk.Median numbers of aberrant crypts in the distal 2 cm of the colon for 1 and 3 AOMinjections, CF1 controls, ANC (Experiment 1), ANC (Experiment 2),and untreated A/J mice were 31, 74, 12, 20, 12, and 5–6, with P < 0.01 for both ANC tests. Experiment 2 showed somewhat increased numbers of colonic mucin-depleted foci in the ANC-treated group. We conclude that hot-dog-derived ANC induced significant numbers of aberrant crypts in the mouse colon

    A Finite Element Computation of the Gravitational Radiation emitted by a Point-like object orbiting a Non-rotating Black Hole

    Full text link
    The description of extreme-mass-ratio binary systems in the inspiral phase is a challenging problem in gravitational wave physics with significant relevance for the space interferometer LISA. The main difficulty lies in the evaluation of the effects of the small body's gravitational field on itself. To that end, an accurate computation of the perturbations produced by the small body with respect the background geometry of the large object, a massive black hole, is required. In this paper we present a new computational approach based on Finite Element Methods to solve the master equations describing perturbations of non-rotating black holes due to an orbiting point-like object. The numerical computations are carried out in the time domain by using evolution algorithms for wave-type equations. We show the accuracy of the method by comparing our calculations with previous results in the literature. Finally, we discuss the relevance of this method for achieving accurate descriptions of extreme-mass-ratio binaries.Comment: RevTeX 4. 18 pages, 8 figure

    Pseudo-dynamic method for structural analysis of automobile seats

    Get PDF
    This work describes the application of a pseudo-dynamic (PsD) method to the dynamic analysis of passenger seats for the automotive industry. The project of such components involves a structural test considering the action of dynamic forces arising from a crash scenario. The laboratory certification of these automotive components consists essentially on the inspection of the propagation and extension of plastic deformations zones in metallic members of the seat structure as consequence of the mutual action between the seat and the passenger fastened to the seat via seat belt anchorages. This work presents a relatively simple experiment using PsD techniques as a novel method to performa test equivalent to the dynamic model of a dummy-seat pair subjected to impulsive loads from a car crash. Essentially, the PsD test method is a hybrid and hierarchic computer-driven testing procedure where a numerical algorithm and experimental step are used and combined on-line in order to solve a problem in the scope of structural dynamics. The implementation of the method is not expensive and has the leading advantage of offering the operator a total control of any intermediate structure state during the test still keeping the realism of a real dynamic testing.Project: NDT-AUTO Ref 13-02-2003-FDR-01281 (Agencia de Inovação

    Hybrid simulation of a structure to tsunami loading

    Get PDF
    A new hybrid simulation technique has been developed to assess the behavior of a structure under hydrodynamic loading. It integrates the computational fluid dynamics and structural hybrid simulation and couples the fluid loading and structure response at each simulation step. The conventional displacement-based and recently developed force-based hybrid simulation approaches are adopted in the structural analysis. The concept, procedure, and required components of the proposed hybrid simulation are introduced in this paper. The proposed hybrid simulation has been numerically and physically tested in case of a coastal building impacted by a tsunami wave. It is demonstrated that the force error in the displacement-based approach is significantly larger than that in the force-based approach. The force-based approach allows for a more realistic and reliable structural assessment under tsunami loading

    The Severity of Autism Is Associated with Toxic Metal Body Burden and Red Blood Cell Glutathione Levels

    Get PDF
    This study investigated the relationship of children's autism symptoms with their toxic metal body burden and red blood cell (RBC) glutathione levels. In children ages 3–8 years, the severity of autism was assessed using four tools: ADOS, PDD-BI, ATEC, and SAS. Toxic metal body burden was assessed by measuring urinary excretion of toxic metals, both before and after oral dimercaptosuccinic acid (DMSA). Multiple positive correlations were found between the severity of autism and the urinary excretion of toxic metals. Variations in the severity of autism measurements could be explained, in part, by regression analyses of urinary excretion of toxic metals before and after DMSA and the level of RBC glutathione (adjusted R2 of 0.22–0.45, P < .005 in all cases). This study demonstrates a significant positive association between the severity of autism and the relative body burden of toxic metals
    corecore