86 research outputs found

    Tocotrienols are good adjuvants for developing cancer vaccines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dendritic cells (DCs) have the potential for cancer immunotherapy due to their ability to process and present antigens to T-cells and also in stimulating immune responses. However, DC-based vaccines have only exhibited minimal effectiveness against established tumours in mice and humans. The use of appropriate adjuvant enhances the efficacy of DC based cancer vaccines in treating tumours.</p> <p>Methods</p> <p>In this study we have used tocotrienol-rich fraction (TRF), a non-toxic natural compound, as an adjuvant to enhance the effectiveness of DC vaccines in treating mouse mammary cancers. In the mouse model, six-week-old female BALB/c mice were injected subcutaneously with DC and supplemented with oral TRF daily (DC+TRF) and DC pulsed with tumour lysate from 4T1 cells (DC+TL). Experimental mice were also injected with DC pulsed with tumour lysate and supplemented daily with oral TRF (DC+TL+TRF) while two groups of animal which were supplemented daily with carrier oil (control) and with TRF (TRF). After three times vaccination, mice were inoculated with 4T1 cells in the mammary breast pad to induce tumour.</p> <p>Results</p> <p>Our study showed that TRF in combination with DC pulsed with tumour lysate (DC+TL+TRF) injected subcutaneously significantly inhibited the growth of 4T1 mammary tumour cells as compared to control group. Analysis of cytokines production from murine splenocytes showed significant increased productions of IFN-γ and IL-12 in experimental mice (DC+TL+TRF) compared to control, mice injected with DC without TRF, mice injected with DC pulsed with tumour lysate and mice supplemented with TRF alone. Higher numbers of cytotoxic T cells (CD8) and natural killer cells (NK) were observed in the peripheral blood of TRF adjuvanted DC pulsed tumour lysate mice.</p> <p>Conclusion</p> <p>Our study show that TRF has the potential to be an adjuvant to augment DC based immunotherapy.</p

    PCBs Exert an Estrogenic Effect through Repression of the Wnt7a Signaling Pathway in the Female Reproductive Tract

    Get PDF
    Polychlorinated biphenyls (PCBs) have been proposed to have a weak estrogenic activity and therefore pose a risk as potential environmental endocrine disruptors to the perinatal development of the female reproductive tract. Perinatal exposure to high concentrations of the potent synthetic estrogen diethylstilbestrol (DES) induces abnormal development of the female reproductive tract via a mechanism that acts through the down-regulation of Wnt7a (wingless-type MMTV integration site family, member 7A). To test the hypothesis that PCBs act as weak estrogens, we injected neonatal mice with a commercial PCB mixture (Aroclor 1254) or with low levels of DES and measured effects of exposure on Wnt7a expression and uterine morphology. We report here that neonatal PCB or low-level DES exposure resulted in the down-regulation of Wnt7a expression. In addition, both PCB and low-level DES exposure induced changes in the uterine myometrium and gland formation. These data reveal that weak estrogens such as the PCBs act through a Wnt7a-dependent pathway and suggest that Wnt7a regulation is a sensitive biomarker for testing weak estrogenic candidate compounds. The morphologic changes that were elicited by PCBs and DES were different immediately after exposure, suggesting that Wnt7a-independent pathways are also activated by one or both of these compounds. Although Wnt7a down-regulation is transient after estrogenic exposure, subsequent morphologic changes became more pronounced during postnatal and adult life, suggesting that the female reproductive tract is permanently reprogrammed after exposure even to weak estrogenic compounds. In addition, Wnt7a heterozygous mice were more sensitive to PCB exposure, revealing an important genetic predisposition to risks of environmental endocrine disruptors

    Effects of supplementation with tocotrienol-rich fraction on immune response to tetanus toxoid immunization in normal healthy volunteers

    Get PDF
    Background/Objectives: Vitamin E is an essential fat-soluble vitamin that has been shown to induce favorable effects on animal and human immune systems. The objective of this study was to assess the effects of tocotrienol-rich fraction (TRF) supplementation on immune response following tetanus toxoid (TT) vaccine challenge in healthy female volunteers. Subjects/Methods: In this double-blinded, placebo-controlled clinical trial, participants were randomly assigned to receive either placebo (control group) or 400 mg of TRF (study group) supplementation daily. Over the 2-month period of the study, volunteers were asked to attend three clinical sessions (that is, on days 0, 28 and 56) and blood samples were obtained from the volunteers during the follow-up. On day 28, all volunteers were also vaccinated with the TT vaccine (20 Lf) intramuscularly. Results: The results from the clinical trial showed that TRF supplementation significantly increased the total vitamin E level in the plasma of the TRF-supplemented volunteers compared with the placebo group, indicating overall compliance. Volunteers supplemented with TRF showed a significantly (P0.05) enhanced production of interferon-γ and interleukin (IL)-4 by the mitogen or TT-stimulated leukocytes compared with the control group. Volunteers from the TRF group produced significantly (P < 0.05) lower amounts of IL-6 compared with the placebo group. Anti-TT IgG production was also significantly (P < 0.05) augmented in the TRF-supplemented group compared with the placebo group. Conclusions: We conclude that TRF has immunostimulatory effects and potential clinical benefits to enhance immune response to vaccines

    Developmental Exposure to Polychlorinated Biphenyls Influences Stroke Outcome in Adult Rats

    Get PDF
    BackgroundThe "developmental origins of adult disease" hypothesis was originally derived from evidence linking low birth weight to cardiovascular diseases including stroke. Subsequently, it has been expanded to include developmental exposures to environmental contaminants as risk factors for adult onset disease.ObjectiveOur goal in this study was to test the hypothesis that developmental exposure to poly-chlorinated biphenyls (PCBs) alters stroke outcome in adults.MethodsWe exposed rats to the PCB mixture Aroclor 1254 (A1254) at 0.1 or 1 mg/kg/day in the maternal diet throughout gestation and lactation. Focal cerebral ischemia was induced at 6-8 weeks of age via middle cerebral artery occlusion, and infarct size was measured in the cerebral cortex and striatum at 22 hr of reperfusion. PCB congeners were quantified in brain tissue by gas chromatography with microelectron capture detection, and cortical and striatal expression of Bcl2 and Cyp2C11 were quantified by quantitative reverse transcriptase-polymerase chain reaction.ResultsDevelopmental exposure to A1254 significantly decreased striatal infarct in females and males at 0.1 and 1 mg/kg/day, respectively. Predominantly ortho-substituted PCB congeners were detected above background levels in brains of adult females and males exposed to A1254 at 1 but not 0.1 mg/kg/day. Effects of developmental A1254 exposure on Bcl2 and Cyp2C11 expression did not correlate with effects on infarct volume.ConclusionOur data provide proof of principle that developmental exposures to environmental contaminants influence the response of the adult brain to ischemic injury and thus represent potentially important determinants of stroke susceptibility

    Gas-Phase Ambient Air Contaminants Exhibit Significant Dioxin-like and Estrogen-like Activity in Vitro

    Get PDF
    Several adverse health effects, such as respiratory and cardiovascular morbidity, have been linked to exposure to particulate matter in ambient air; however, the biologic activity of gas-phase ambient organic air contaminants has not been examined as thoroughly. Using aryl hydrocarbon receptor (AHR)–based and estrogen receptor (ER)–based cell bioassay systems, we assessed the dioxin-like and estrogenic activities of gas-phase organic ambient air contaminants compared with those of particulate-phase contaminants using samples collected between seasons over 2 years from an urban and a rural location in the Greater Toronto Area, Canada. The concentration of the sum (∑) of polycyclic aromatic hydrocarbons, which was highest in the gas phase, was 10–100 times more abundant than that of ∑polychlorinated biphenyls, ∑nitro-polycyclic aromatic hydrocarbons, and ∑organochlorine pesticides, and 10(3) to 10(4) times more abundant than ∑polychlorinated dibenzo-p-dioxins/dibenzofurans. Gas-phase samples induced significant AHR- and ER-dependent gene expression. The activity of the gas-phase samples was greater than that of the particulate-phase samples in the estrogen assay and, in one case, in the AHR assay. We found no strong associations between either summer or winter seasons or urban or rural locations in the relative efficacy of the extracts in either the ER or AHR assay despite differences in chemical composition, concentrations, and abundance. Our results suggest that mechanistic studies of the health effects of ambient air must consider gas and particulate phases because chemicals present in both phases can affect AHR and ER signaling pathways

    Assessment of xenoestrogenic exposure by a biomarker approach: application of the E-Screen bioassay to determine estrogenic response of serum extracts

    Get PDF
    BACKGROUND: Epidemiological documentation of endocrine disruption is complicated by imprecise exposure assessment, especially when exposures are mixed. Even if the estrogenic activity of all compounds were known, the combined effect of possible additive and/or inhibiting interaction of xenoestrogens in a biological sample may be difficult to predict from chemical analysis of single compounds alone. Thus, analysis of mixtures allows evaluation of combined effects of chemicals each present at low concentrations. METHODS: We have developed an optimized in vitro E-Screen test to assess the combined functional estrogenic response of human serum. The xenoestrogens in serum were separated from endogenous steroids and pharmaceuticals by solid-phase extraction followed by fractionation by high-performance liquid chromatography. After dissolution of the isolated fraction in ethanol-DMSO, the reconstituted extract was added with estrogen-depleted fetal calf serum to MCF-7 cells, the growth of which is stimulated by estrogen. After a 6-day incubation on a microwell plate, cell proliferation was assessed and compared with the effect of a 17-beta-estradiol standard. RESULTS AND CONCLUSIONS: To determine the applicability of this approach, we assessed the estrogenicity of serum samples from 30 pregnant and 60 non-pregnant Danish women thought to be exposed only to low levels of endocrine disruptors. We also studied 211 serum samples from pregnant Faroese women, whose marine diet included whale blubber that contain a high concentration of persistent halogenated pollutants. The estrogenicity of the serum from Danish controls exceeded the background in 22.7 % of the cases, while the same was true for 68.1 % of the Faroese samples. The increased estrogenicity response did not correlate with the lipid-based concentrations of individual suspected endocrine disruptors in the Faroese samples. When added along with the estradiol standard, an indication of an enhanced estrogenic response was found in most cases. Thus, the in vitro estrogenicity response offers a promising and feasible approach for an aggregated exposure assessment for xenoestrogens in serum

    γ-Tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways

    Get PDF
    Tocotrienol-rich fraction (TRF) has demonstrated antiproliferative effect on prostate cancer (PCa) cells. To elucidate this anticancer property in PCa cells, this study aimed, first, to identify the most potent isomer for eliminating PCa cells; and second, to decipher the molecular pathway responsible for its activity. Results showed that the inhibitory effect of γ-tocotrienol was most potent, which resulted in induction of apoptosis as evidenced by activation of pro-caspases and the presence of sub-G1 cell population. Examination of the pro-survival genes revealed that the γ-tocotrienol-induced cell death was associated with suppression of NF-κB, EGF-R and Id family proteins (Id1 and Id3). Meanwhile, γ-tocotrienol treatment also resulted in the induction of JNK-signalling pathway and inhibition of JNK activity by a specific inhibitor (SP600125) was able to partially block the effect of γ-tocotrienol. Interestingly, γ-tocotrienol treatment led to suppression of mesenchymal markers and the restoration of E-cadherin and γ-catenin expression, which was associated with suppression of cell invasion capability. Furthermore, a synergistic effect was observed when cells were co-treated with γ-tocotrienol and Docetaxel. Our results suggested that the antiproliferative effect of γ-tocotrienol act through multiple-signalling pathways, and demonstrated for the first time the anti-invasion and chemosensitisation effect of γ-tocotrienol against PCa cells

    Activation of the steroid and xenobiotic receptor, SXR, induces apoptosis in breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The steroid and xenobiotic receptor, SXR, is an orphan nuclear receptor that regulates metabolism of diverse dietary, endobiotic, and xenobiotic compounds. SXR is expressed at high levels in the liver and intestine, and at lower levels in breast and other tissues where its function was unknown. Since many breast cancer preventive and therapeutic compounds are SXR activators, we hypothesized that some beneficial effects of these compounds are mediated through SXR.</p> <p>Methods</p> <p>To test this hypothesis, we measured proliferation of breast cancer cells in response to SXR activators and evaluated consequent changes in the expression of genes critical for proliferation and cell-cycle control using quantitative RT-PCR and western blotting. Results were confirmed using siRNA-mediated gene knockdown. Statistical analysis was by t-test or ANOVA and a P value ≤ 0.05 was considered to be significant.</p> <p>Results</p> <p>Many structurally and functionally distinct SXR activators inhibited the proliferation of MCF-7 and ZR-75-1 breast cancer cells by inducing cell cycle arrest at the G1/S phase followed by apoptosis. Decreased growth in response to SXR activation was associated with stabilization of p53 and up-regulation of cell cycle regulatory and pro-apoptotic genes such as p21, PUMA and BAX. These gene expression changes were preceded by an increase in inducible nitric oxide synthase and nitric oxide in these cells. Inhibition of iNOS blocked the induction of p53. p53 knockdown inhibited up-regulation of p21 and BAX. We infer that NO is required for p53 induction and that p53 is required for up-regulation of cell cycle regulatory and apoptotic genes in this system. SXR activator-induced increases in iNOS levels were inhibited by siRNA-mediated knockdown of SXR, indicating that SXR activation is necessary for subsequent regulation of iNOS expression.</p> <p>Conclusion</p> <p>We conclude that activation of SXR is anti-proliferative in p53 wild type breast cancer cells and that this effect is mechanistically dependent upon the local production of NO and NO-dependent up-regulation of p53. These findings reveal a novel biological function for SXR and suggest that a subset of SXR activators may function as effective therapeutic and chemo-preventative agents for certain types of breast cancers.</p
    corecore