1,385 research outputs found

    Entanglement Purification through Zeno-like Measurements

    Full text link
    We present a novel method to purify quantum states, i.e. purification through Zeno-like measurements, and show an application to entanglement purification.Comment: 5 pages, 1 figure; Contribution to the Proceedings of "Mysteries, Puzzles and Paradoxes in Quantum Mechanics", Gargnano, Italy, 2003 (to be published in J. Mod. Opt.

    Oscillations of the purity in the repeated-measurement-based generation of quantum states

    Full text link
    Repeated observations of a quantum system interacting with another one can drive the latter toward a particular quantum state, irrespectively of its initial condition, because of an {\em effective non-unitary evolution}. If the target state is a pure one, the degree of purity of the system approaches unity, even when the initial condition of the system is a mixed state. In this paper we study the behavior of the purity from the initial value to the final one, that is unity. Depending on the parameters, after a finite number of measurements, the purity exhibits oscillations, that brings about a lower purity than that of the initial state, which is a point to be taken care of in concrete applications.Comment: 5 pages, 3 figure

    Macroscopic limit of a solvable dynamical model

    Get PDF
    The interaction between an ultrarelativistic particle and a linear array made up of NN two-level systems (^^ ^^ AgBr" molecules) is studied by making use of a modified version of the Coleman-Hepp Hamiltonian. Energy-exchange processes between the particle and the molecules are properly taken into account, and the evolution of the total system is calculated exactly both when the array is initially in the ground state and in a thermal state. In the macroscopic limit (N→∞N \rightarrow \infty), the system remains solvable and leads to interesting connections with the Jaynes-Cummings model, that describes the interaction of a particle with a maser. The visibility of the interference pattern produced by the two branch waves of the particle is computed, and the conditions under which the spin array in the N→∞N \rightarrow \infty limit behaves as a ^^ ^^ detector" are investigated. The behavior of the visibility yields good insights into the issue of quantum measurements: It is found that, in the thermodynamical limit, a superselection-rule space appears in the description of the (macroscopic) apparatus. In general, an initial thermal state of the ^^ ^^ detector" provokes a more substantial loss of quantum coherence than an initial ground state. It is argued that a system decoheres more as the temperature of the detector increases. The problem of ^^ ^^ imperfect measurements" is also shortly discussed.Comment: 30 pages, report BA-TH/93-13
    • …
    corecore