28,445 research outputs found

    Cyclic cosmology from Lagrange-multiplier modified gravity

    Full text link
    We investigate cyclic and singularity-free evolutions in a universe governed by Lagrange-multiplier modified gravity, either in scalar-field cosmology, as well as in f(R)f(R) one. In the scalar case, cyclicity can be induced by a suitably reconstructed simple potential, and the matter content of the universe can be successfully incorporated. In the case of f(R)f(R)-gravity, cyclicity can be induced by a suitable reconstructed second function f2(R)f_2(R) of a very simple form, however the matter evolution cannot be analytically handled. Furthermore, we study the evolution of cosmological perturbations for the two scenarios. For the scalar case the system possesses no wavelike modes due to a dust-like sound speed, while for the f(R)f(R) case there exist an oscillation mode of perturbations which indicates a dynamical degree of freedom. Both scenarios allow for stable parameter spaces of cosmological perturbations through the bouncing point.Comment: 8 pages, 3 figures, references added, accepted for publicatio

    Validity of the Generalized Second Law of Thermodynamics of the Universe Bounded by the Event Horizon in Brane Scenario

    Full text link
    In this paper, we examine the validity of the generalized second law of thermodynamics (GSLT) of the universe bounded by the event horizon in brane-world gravity. Here we consider homogeneous and isotropic model of the universe filled with perfect fluid in one case and in another case holographic dark energy model of the universe has been considered. The conclusions are presented point wise.Comment: 8 pages, the paper has been accepted in EPJC for publication. Conclusion has been modified an some references have been adde

    Anomalous Angular Dependence of the Dynamic Structure Factor near Bragg Reflections: Graphite

    Get PDF
    The electron energy-loss function of graphite is studied for momentum transfers q beyond the first Brillouin zone. We find that near Bragg reflections the spectra can change drastically for very small variations in q. The effect is investigated by means of first principle calculations in the random phase approximation and confirmed by inelastic x-ray scattering measurements of the dynamic structure factor S(q,\omega). We demonstrate that this effect is governed by crystal local field effects and the stacking of graphite. It is traced back to a strong coupling between excitations at small and large momentum transfers

    Late acceleration and w=−1w=-1 crossing in induced gravity

    Full text link
    We study the cosmological evolution on a brane with induced gravity within a bulk with arbitrary matter content. We consider a Friedmann-Robertson-Walker brane, invariantly characterized by a six-dimensional group of isometries. We derive the effective Friedmann and Raychaudhuri equations. We show that the Hubble expansion rate on the brane depends on the covariantly defined integrated mass in the bulk, which determines the energy density of the generalized dark radiation. The Friedmann equation has two branches, distinguished by the two possible values of the parameter \ex=\pm 1. The branch with \ex=1 is characterized by an effective cosmological constant and accelerated expansion for low energy densities. Another remarkable feature is that the contribution from the generalized dark radiation appears with a negative sign. As a result, the presence of the bulk corresponds to an effective negative energy density on the brane, without violation of the weak energy condition. The transition from a period of domination of the matter energy density by non-relativistic brane matter to domination by the generalized dark radiation corresponds to a crossing of the phantom divide w=−1w=-1.Comment: 7 pages, no figures, RevTex 4.0; (v2) new references are added, minor corrections and expanded discussion; (v3) additional comments at the end of section III, minor corrections and several new references are added, to match published version in Phys. Rev.

    A deep level set method for image segmentation

    Full text link
    This paper proposes a novel image segmentation approachthat integrates fully convolutional networks (FCNs) with a level setmodel. Compared with a FCN, the integrated method can incorporatesmoothing and prior information to achieve an accurate segmentation.Furthermore, different than using the level set model as a post-processingtool, we integrate it into the training phase to fine-tune the FCN. Thisallows the use of unlabeled data during training in a semi-supervisedsetting. Using two types of medical imaging data (liver CT and left ven-tricle MRI data), we show that the integrated method achieves goodperformance even when little training data is available, outperformingthe FCN or the level set model alone

    Nonorthogonal decoy-state Quantum Key Distribution

    Full text link
    In practical quantum key distribution (QKD), weak coherent states as the photon sources have a limit in secure key rate and transmission distance because of the existence of multiphoton pulses and heavy loss in transmission line. Decoy states method and nonorthogonal encoding protocol are two important weapons to combat these effects. Here, we combine these two methods and propose a efficient method that can substantially improve the performance of QKD. We find a 79 km increase in transmission distance over the prior record using decoy states method.Comment: 4 pages, 1 figure; Revtex4, submitted to PR

    The effect of different baryons impurities

    Full text link
    We demonstrate the different effect of different baryons impurities on the static properties of nuclei within the framework of the relativistic mean-field model. Systematic calculations show that Λc+\Lambda_c^+ and Λb\Lambda_b has the same attracting role as Λ\Lambda hyperon does in lighter hypernuclei. Ξ−\Xi^- and Ξc0\Xi_c^0 hyperon has the attracting role only for the protons distribution, and has a repulsive role for the neutrons distribution. On the contrary, Ξ0\Xi^0 and Ξc+\Xi^+_c hyperon attracts surrounding neutrons and reveals a repulsive force to the protons. We find that the different effect of different baryons impurities on the nuclear core is due to the different third component of their isospin.Comment: 9 page
    • 

    corecore