2,527 research outputs found

    Cosmic ray sidereal diurnal variation of galactic origin observed by neutron monitors

    Get PDF
    Cosmic ray sidereal diurnal variations observed by neutron monitors are analyzed for the period 1961 to 1978, by adding 134 station years data to the previous paper (Nagashima, et al., 1983). Also the dependence of the sidereal variations on Sun's polar magnetic field polarity is examined for two periods; the period of negative polarity in the northern region, 1961 to 1969 and the period of positive polarity, 1970 to 1978. It is obtained that for the former period, the amplitude A=0.0203 + or 0.0020% and the phase phi=6.1 + or - 0.4 h LST and for the latter period, 0.0020% and phi=8.6 + or - 4 h LST, respectively

    Cytoplasmic contribution to protoperithecium formation

    Get PDF
    Cytoplasmic contribution to protoperithecium formatio

    Anomalous increase of solar anisotropy above 150GV in 1981-1983

    Get PDF
    An analysis was carried out of the observed data with Nagoya (surface). Misato (34mwe) and Sakashita (80mwe) multidirectional muon telescope, for the solar activity maximum period of 1978-1983. These data respond to primaries extending over the median rigidity range 60GV to 600GV. The observed amplitude at Sakashita station in 1981-1983 increased, especially in 1982; the amplitude is twice as large as that in 1978-1980, when those at Nagoya and Misato stations are nearly the same as those in 1978-1980. Uni-directional anisotropy is derived by the best fit method by assuming the flat rigidity spectrum with the upper cutoff rigidity Pu. The value of Pu obtained is 270GV in 1981-1983 and 150GV in 1978-1980

    Solar tri-diurnal variation of cosmic rays in a wide range of rigidity

    Get PDF
    Solar tri-diurnal variations of cosmic rays have been analyzed in a wide range of rigidity, using data from neutron monitors, and the surface and underground muon telescopes for the period 1978-1983. The rigidity spectrum of the anisotropy in space is assumed to be of power-exponential type as (P/gamma P sub o) to the gamma exp (gamma-P/P sub o). By means of the best-fit method between the observed and the expected variations, it is obtained that the spectrum has a peak at P (=gamma P sub o) approx = 90 GV, where gamma=approx 3.0 and P sub o approx. 30 GV. The phase in space of the tri-diurnal variation is also obtained as 7.0 hr (15 hr and 23 hr LT), which is quite different from that of approx. 1 hr. arising from the axisymmetric distribution of cosmic rays with respect to the IMF
    corecore