8,351 research outputs found
Lipschitz shadowing implies structural stability
We show that the Lipschitz shadowing property of a diffeomorphism is
equivalent to structural stability. As a corollary, we show that an expansive
diffeomorphism having the Lipschitz shadowing property is Anosov.Comment: 11 page
Depositional constraints and age of metamorphism in southern India: U-Pb chemical (EMPA) and isotopic (SIMS) ages from the Trivandrum Block
We report U–Pb electron microprobe (zircon and monazite) and Secondary Ion Mass Spectrometry (SIMS) U–Pb (zircon) ages from a granulite-facies metapelite and a garnet–biotite gniess from Chittikara, a classic locality within the Trivandrum Block of southern India. The majority of the electron-microprobe data on zircons from the metapelite define apparent ages between 1500 and 2500 Ma with a prominent peak at 2109±22 Ma, although some of the cores are as old as 3070 Ma. Zircon grains with multiple age zoning are also detected with 2500–3700 Ma cores, 1380–1520 mantles and 530–600 Ma outer rims. Some homogeneous and rounded zircon cores yielded late Neoproterozoic ages that suggest that deposition within the Trivandrum Block belt was younger than 610 Ma. The outermost rims of these grains are characterized by early Cambrian ages suggesting metamorphic overgrowth at this time. The apparent ages of monazite grains from this locality reveal multiple provenance and polyphase metamorphic history, similar to those of the zircons. In a typical case, Palaeoproterozoic cores (1759–1967 Ma) are enveloped by late Neoproterozoic rims (562–563 Ma), which in turn are mantled by an outermost thin Cambrian rim ([similar]515 Ma). PbO v. ThO*2 plots for monazites define broad isochrons, with cores indicating a rather imprecise age of 1913±260 Ma (MSWD=0.80) and late Neoproterozoic/Cambrian cores as well as thin rims yielding a well-defined isochron with an age of 557±19 Ma (MSWD=0.82). SIMS U–Pb isotopic data on zircons from the garnet–biotite gneiss yield a combined core/rim imprecise discordia line between 2106±37 Ma and 524±150 Ma. The data indicate Palaeoproterozoic zircon formation with later partial or non-uniform Pb loss during the late Neoproterozoic/Cambrian tectonothermal event. The combined electron probe and SIMS data from the metapelite and garnet–biotite gneiss at Chittikara indicate that the older zircons preserved in the finer-grained metapelite protolith have heterogeneous detrital sources, whereas the more arenaceous protolith of the garnet–biotite gniess was sourced from a single-aged terrane. Our data suggest that the metasedimentary belts in southern India may have formed part of an extensive late Neoproterozoic sedimentary basin during the final amalgamation of the Gondwana supercontinent.M. Santosh, A. S. Collins, T. Morimoto and K. Yokoyam
Numerical modeling of dynamic powder compaction using the Kawakita equation of state
Dynamic powder compaction is analyzed using the assumption that the powder behaves, while it is being compacted, like a hydrodynamic fluid in which deviatoric stress and heat conduction effects can be ignored throughout the process. This enables techniques of computational fluid dynamics such the equilibrium flux method to be used as a modeling tool. The equation of state of the powder under compression is assumed to be a modified version of the Kawakita loading curve. Computer simulations using this model are performed for conditions matching as closely as possible with those from experiments by Page and Killen [Powder Metall. 30, 233 (1987)]. The numerical and experimental results are compared and a surprising degree of qualitative agreement is observed
Terahertz Magneto Optical Polarization Modulation Spectroscopy
We report the development of new terahertz techniques for rapidly measuring
the complex Faraday angle in systems with broken time-reversal symmetry using
the cyclotron resonance of a GaAs two-dimensional electron gas in a magnetic
field as a system for demonstration of performance. We have made polarization
modulation, high sensitivity (< 1 mrad) narrow band rotation measurements with
a CW optically pumped molecular gas laser, and by combining the distinct
advantages of terahertz (THz) time domain spectroscopy and polarization
modulation techniques, we have demonstrated rapid broadband rotation
measurements to < 5 mrad precision.Comment: 25 pages including 7 figures, introduces use of rotating polarizer
with THz TDS for Complex Faraday Angle determinatio
Tuning the electrically evaluated electron Lande g factor in GaAs quantum dots and quantum wells of different well widths
We evaluate the Lande g factor of electrons in quantum dots (QDs) fabricated
from GaAs quantum well (QW) structures of different well width. We first
determine the Lande electron g factor of the QWs through resistive detection of
electron spin resonance and compare it to the enhanced electron g factor
determined from analysis of the magneto-transport. Next, we form laterally
defined quantum dots using these quantum wells and extract the electron g
factor from analysis of the cotunneling and Kondo effect within the quantum
dots. We conclude that the Lande electron g factor of the quantum dot is
primarily governed by the electron g factor of the quantum well suggesting that
well width is an ideal design parameter for g-factor engineering QDs
In Vivo Observation of Structural Changes in Neocortical Catecholaminergic Projections in Response to Drugs of Abuse
Catecholaminergic (dopamine and norepinephrine) projections to the cortex play an important role in cognitive functions and dysfunctions including learning, addiction, and mental disorders. While dynamics of glutamatergic synapses have been well studied in such contexts, little is known regarding catecholaminergic projections, owing to lack of robust methods. Here we report a system to monitor catecholaminergic projections in vivo over the timeframes that such events occur. Green fluorescent protein (GFP) expression driven by tyrosine hydroxylase promoter in a transgenic mouse line enabled us to perform two-photon imaging of cortical catecholaminergic projections through a cranial window. Repetitive imaging of the same axons over 24 h revealed the highly dynamic nature of catecholaminergic boutons. Surprisingly, administration of single high dose methamphetamine (MAP) induced a transient increase in bouton volumes. This new method opens avenues for longitudinal in vivo evaluation of structural changes at single release sites of catecholamines in association with physiology and pathology of cortical functions
- …
