4,828 research outputs found

    A 3D Model of the 4GLS VUV-FEL Conceptual Design Including Improved Modelling of the Optical Cavity

    Get PDF
    The Conceptual Design Report for the 4th Generation Light Source (4GLS) at Daresbury Laboratory in the UK was published in Spring 2006. The proposal includes a low-Q cavity (also called a regenerative amplifier) FEL to generate variably-polarised, temporally-coherent radiation in the photon energy range 3-10eV. A new simulation code has been developed that incorporates the 3D FEL code Genesis 1.3 and which simulates in 3D the optical components and radiation propagation within the non-amplifying sections of an optical cavity*. This code is used to estimate the optimum low-Q cavity design and characterise the output from the 4GLS VUV-FEL

    Short-Interval Cortical Inhibition and Intracortical Facilitation during Submaximal Voluntary Contractions Changes with Fatigue

    Get PDF
    This study determined whether short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) change during a sustained submaximal isometric contraction. On 2 days, 12 participants (6 men, 6 women) performed brief (7-s) elbow flexor contractions before and after a 10-min fatiguing contraction; all contractions were performed at the level of integrated electromyographic activity (EMG) which produced 25 % maximal unfatigued torque. During the brief 7-s and 10-min submaximal contractions, single (test) and paired (conditioningā€“test) transcranial magnetic stimuli were applied over the motor cortex (5 s apart) to elicit motor-evoked potentials (MEPs) in biceps brachii. SICI and ICF were elicited on separate days, with a conditioningā€“test interstimulus interval of 2.5 and 15 ms, respectively. On both days, integrated EMG remained constant while torque fell during the sustained contraction by ~51.5 % from control contractions, perceived effort increased threefold, and MVC declined by 21ā€“22 %. For SICI, the conditioned MEP during control contractions (74.1 Ā± 2.5 % of unconditioned MEP) increased (less inhibition) during the sustained contraction (last 2.5 min: 86.0 Ā± 5.1 %; P \u3c 0.05). It remained elevated in recovery contractions at 2 min (82.0 Ā± 3.8 %; P \u3c 0.05) and returned toward control at 7-min recovery (76.3 Ā± 3.2 %). ICF during control contractions (conditioned MEP 129.7 Ā± 4.8 % of unconditioned MEP) decreased (less facilitation) during the sustained contraction (last 2.5 min: 107.6 Ā± 6.8 %; P \u3c 0.05) and recovered to 122.8 Ā± 4.3 % during contractions after 2 min of recovery. Both intracortical inhibitory and facilitatory circuits become less excitable with fatigue when assessed during voluntary activity, but their different time courses of recovery suggest different mechanisms for the fatigue-related changes of SICI and ICF

    Difference in membrane repair capacity between cancer cell lines and a normal cell line

    Get PDF
    Electroporation-based treatments and other therapies that permeabilize the plasma membrane have been shown to be more devastating to malignant cells than to normal cells. In this study, we asked if a difference in repair capacity could explain this observed difference in sensitivity. Membrane repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique, providing a sensitive index of repair capacity. The normal primary cell line of all tested cell lines exhibited the slowest rate of dye entry after laser disruption and lowest level of dye uptake. Significantly, more rapid dye uptake and a higher total level of dye uptake occurred in six of the seven tested cancer cell lines (pĀ <Ā 0.05) as well as the immortalized cell line (pĀ <Ā 0.001). This difference in sensitivity was also observed when a viability assay was performed one day after plasma membrane permeabilization by electroporation. Viability in the primary normal cell line (98Ā % viable cells) was higher than in the three tested cancer cell lines (81ā€“88Ā % viable cells). These data suggest more effective membrane repair in normal, primary cells and supplement previous explanations why electroporation-based therapies and other therapies permeabilizing the plasma membrane are more effective on malignant cells compared to normal cells in cancer treatment

    Physical phenomena in containerless glass processing

    Get PDF
    Experiments were conducted on bubble migration in rotating liquid bodies contained in a sphere. Experiments were initiated on the migration of a drop in a slightly less dense continuous phase contained in a rotating sphere. A refined apparatus for the study of thermocapillar flow in a glass melt was built, and data were acquired on surface velocities in the melt. Similar data also were obtained from an ambient temperature fluid model. The data were analyzed and correlated with the aid of theory. Data were obtained on flow velocities in a pendant drop heated from above. The motion in this system was driven principally by thermocapillarity. An apparatus was designed for the study of volatilization from a glass melt

    Oxygen and nitrogen cycling in the northeast Pacific ā€“ Simulations and observations at Station Papa in 2003/2004

    Get PDF
    A long-term air-sea exchange mooring has been maintained in the North Pacific near Ocean Station Papa (OSP, 145W, 50N) since September 2002 as part of the Canadian Surface Ocean Lower Atmosphere Study (C-SOLAS). The mooring provides a new long-term data set for gas measurements. In addition to Conductivity, Temperature and Depth (CTD) recorders at two depths, the mooring is equipped with ProOceanus Gas Tension Devices (GTDs) measuring the total gas pressure at four different depths, two oxygen sensors, two fluorometers for chlorophyll estimates, and an upward-looking 200 kHz echo-sounder for bubble measurements. Chlorophyll data have been added using SeaWiFS imagery and occasional bottle casts. Data collected from June 2003 to June 2004 are compared with simulations from a 1-D coupled atmosphere-ocean-biogeochemical model. The coupled model consists of an atmospheric Single Column Model (SCM), based on the CCCma AGCM (Canadian Centre for Climate Modelling and Analysis-Atmospheric General Circulation Model), the General Ocean Turbulence Model (GOTM) and a 7-component ecosystem model embedded in GOTM. The ecosystem model also includes oxygen, nitrogen, carbon, and silica cycling. The study focuses on simulated and observed N2 and O2 variability. The comparison of these gases allows for separation of physical and biological processes; which can then be evaluated in more detail with the aid of model simulations. The model also tests different parameterizations for saturation and gas exchange, including a formulation for gas injection via bubbles, which affects gas concentrations within the whole mixed layer. For most of the time the model shows good agreement with observations. However, in summer 2003 the observations reveal a strong oxygen and chlorophyll event, which is not reproduced in the standard model run. A weaker signal is seen in May 2004. OSP is a High Nutrient Low Chlorophyll (HNLC) region, limited by the micronutrient iron. Increases in usually low chlorophyll values occur occasionally due to natural iron enrichment (dust deposition, eddy transport, below surface layer transport). Although limitations of 1-D modeling become apparent here, an assumed input of iron in the model explains the differences between simulated and observed oxygen and chlorophyll maxima. The model provides information on the strength and duration of potential iron contribution. No obvious dust events or eddy traverses to supply iron were recorded during this time period. An alternative explanation is entrainment from deeper waters, where occasional iron enrichment is known to occur due to off-shelf transport via eddies or recirculation from the Alaskan shelf

    Bostonia

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
    • ā€¦
    corecore