9 research outputs found

    The genomics of recovery from coral bleaching

    No full text

    Mediterranean versus Red sea corals facing climate change, a transcriptome analysis

    Get PDF
    The anthropogenic increase in atmospheric CO(2) that drives global warming and ocean acidification raises serious concerns regarding the future of corals, the main carbonate biomineralizers. Here we used transcriptome analysis to study the effect of long-term gradual temperature increase (annual rate), combined with lowered pH values, on a sub-tropical Red Sea coral, Stylophora pistillata, and on a temperate Mediterranean symbiotic coral Balanophyllia europaea. The gene expression profiles revealed a strong effect of both temperature increase and pH decrease implying for synergism response. The temperate coral, exposed to a twice as high range of seasonal temperature fluctuations than the Red Sea species, faced stress more effectively. The compensatory strategy for coping apparently involves deviating cellular resources into a massive up-regulation of genes in general, and specifically of genes involved in the generation of metabolic energy. Our results imply that sub-lethal, prolonged exposure to stress can stimulate evolutionary increase in stress resilience

    Physiological plasticity related to zonation affects <i>hsp70</i> expression in the reef-building coral <i>Pocillopora verrucosa</i>

    No full text
    <div><p>This study investigates for the first time the transcriptional regulation of a stress-inducible 70-kDa heat shock protein (<i>hsp70</i>) in the scleractinian coral <i>Pocillopora verrucosa</i> sampled at three locations and two depths (3 m and 12 m) in Bangka Island waters (North Sulawesi, Indonesia). Percentage of coral cover indicated reduced habitat suitability with depth and at the Tanjung Husi (TA) site, which also displayed relatively higher seawater temperatures. Expression of the <i>P</i>. <i>verrucosa hsp70</i> transcript evaluated under field conditions followed a depth-related profile, with relatively higher expression levels in 3-m collected nubbins compared to the 12-m ones. Expression levels of metabolism-related transcripts ATP synthase and NADH dehydrogenase indicated metabolic activation of nubbins to cope with habitat conditions of the TA site at 3 m. After a 14-day acclimatization to common and fixed temperature conditions in the laboratory, corals were subjected for 7 days to an altered thermal regime, where temperature was elevated at 31°C during the light phase and returned to 28°C during the dark phase. Nubbins collected at 12 m were relatively more sensitive to thermal stress, as they significantly over-expressed the selected transcripts. Corals collected at 3 m appeared more resilient, as they showed unaffected mRNA expressions. The results indicated that local habitat conditions may influence transcription of stress-related genes in <i>P</i>. <i>verrucosa</i>. Corals exhibiting higher basal <i>hsp70</i> levels may display enhanced tolerance towards environmental stressors.</p></div
    corecore