60,288 research outputs found
Point-Source Power in 3 Year Wilkinson Microwave Anisotropy Probe Data
Using a set of multifrequency cross spectra computed from the 3 year WMAP sky maps, we fit for the unresolved point-source contribution. For a white-noise power spectrum, we find a Q-band amplitude of A = 0.011 ± 0.001 μK^2 sr (antenna temperature), significantly smaller than the value of 0.017 ± 0.002 μK^2 sr used to correct the spectra in the WMAP release. Modifying the point-source correction in this way largely resolves the discrepancy that Eriksen et al. found between the WMAP V- and W-band power spectra. Correcting the co-added WMAP spectrum for both the low-l power excess due to a suboptimal likelihood approximation—also reported by Eriksen et al.—and the high-l power deficit due to oversubtracted point sources—presented in this Letter—we find that the net effect in terms of cosmological parameters is an ~0.7 σ shift in n_s to larger values. For the combination of WMAP, BOOMERANG, and ACBAR data, we find ns = 0.969 ± 0.016, lowering the significance of n_s ≠ 1 from ~2.7 σ to ~2.0 σ
Accounting for Multiplicity in Calculating Eta Earth
Using the updated exoplanet population parameters of our previous study,
which includes the planetary radius updates from Gaia DR2 and an inferred
multiplicity distribution, we provide a revised calculation.
This is achieved by sampling planets from our derived population model and
determining which planets meet our criterion for habitability. To ensure robust
results, we provide probabilities calculated over a range of upper radius
limits. Our most optimistic criterion for habitability provides an
value of . We also
consider the effects of multiplicity and the number of habitable planets each
system may contain. Our calculation indicates that of GK dwarfs
have more than one planet within their habitable zone. This optimistic
habitability criterion also suggests that of solar-like stars
will harbor 5 or more habitable planets. These tightly packed highly habitable
system should be extremely rare, but still possible. Even with our most
pessimistic criterion we still expect that of solar-like stars
harbor more than one habitable planet.Comment: 7 pages, 1 figure; Accepted for publication in MNRA
Recommended from our members
Changing the way we learn: towards agile learning and co-operation
This paper addresses the need for learning and competence development in industrial organizations. The people that enter professional organizations today are part of a gamer generation that have some or much experience with on-line games. Therefore they are more open to e-learning and in general more open to access anything on-line. At the same time industrial organizations experience a pressure on their ability to train employees faster due to the increase in complexity. We argue that games are not yet mature enough to support this training challenge as stand alone efforts. But games can support the training and competence development in a synchronized setup with other means
Description of Four-Body Breakup Reaction with the Method of Continuum-Discretized Coupled-Channels
We present a method for smoothing discrete breakup -matrix elements
calculated by the method of continuum-discretized coupled-channels (CDCC). This
smoothing method makes it possible to apply CDCC to four-body breakup
reactions. The reliability of the smoothing method is confirmed for two cases,
Ni(, ) at 80 MeV and the transition of He. We apply
CDCC with the smoothing method to He breakup reaction at 22.5 MeV.
Multi-step breakup processes are found to be important.Comment: 19 pages, 7 figures, published in Progress of Theoretical Physic
The scalar perturbation spectral index n_s: WMAP sensitivity to unresolved point sources
Precision measurement of the scalar perturbation spectral index, n_s, from
the Wilkinson Microwave Anisotropy Probe temperature angular power spectrum
requires the subtraction of unresolved point source power. Here we reconsider
this issue. First, we note a peculiarity in the WMAP temperature likelihood's
response to the source correction: Cosmological parameters do not respond to
increased source errors. An alternative and more direct method for treating
this error term acts more sensibly, and also shifts n_s by ~0.3 sigma closer to
unity. Second, we re-examine the source fit used to correct the power spectrum.
This fit depends strongly on the galactic cut and the weighting of the map,
indicating that either the source population or masking procedure is not
isotropic. Jackknife tests appear inconsistent, causing us to assign large
uncertainties to account for possible systematics. Third, we note that the WMAP
team's spectrum was computed with two different weighting schemes: uniform
weights transition to inverse noise variance weights at l = 500. The fit
depends on such weighting schemes, so different corrections apply to each
multipole range. For the Kp2 mask used in cosmological analysis, we prefer
source corrections A = 0.012 +/- 0.005 muK^2 for uniform weighting and A =
0.015 +/- 0.005 muK^2 for N_obs weighting. Correcting WMAP's spectrum
correspondingly, we compute cosmological parameters with our alternative
likelihood, finding n_s = 0.970 +/- 0.017 and sigma_8 = 0.778 +/- 0.045 . This
n_s is only 1.8 sigma from unity, compared to the ~2.6 sigma WMAP 3-year
result. Finally, an anomalous feature in the source spectrum at l<200 remains,
most strongly associated with W-band.Comment: 9 pages, 10 figures, 3 tables. Submitted to Ap
Co- and counter-helicity interaction between two adjacent laboratory prominences
The interaction between two side-by-side solar prominence-like plasmas has been studied using a four-electrode magnetized plasma source that can impose a wide variety of surface boundary conditions. When the source is arranged to create two prominences with the same helicity (co-helicity), it is observed that helicity transfer from one prominence to the other causes the receiving prominence to erupt sooner and faster than the transmitting prominence. When the source is arranged to create two prominences with opposite helicity (counter-helicity), it is observed that upon merging, prominences wrap around each other to form closely spaced, writhing turns of plasma. This is followed by appearance of a distinct bright region in the middle and order of magnitude higher emission of soft x rays. The four-electrode device has also been used to change the angle of the neutral line and so form more pronounced S-shapes
Forage legume impact on soil fertility and N balance
Dairy production systems in Europe are to a large extent based on ley-arable rotations. In the ley phase of such rotations nitrogen accumulation occurs as a result of (1) organic carbon accumulation in soil not disturbed by tillage operations and (2) a considerable nitrogen surplus in grasslands, particularly under grazing regimes where a large part of the N in ingested grass is recycled to soil via urine and faeces. The accumulation of N and C in grasslands starts soon after establishment, the rate asymptotically declining with age and depends on practices such as fertiliser level, animal feed composition, stocking density, length of grazing and the botanical composition of the sward. In these pasture systems, key perennial legumes are white clover (Trifolium repens L.) red clover (Trifolium pratense L.) and lucerne (Medicago sativa). They are used because of their valuable contribution to production, feed quality and N inputs via biological fixation of atmospheric N2 (Ledgard et al., 2010)
Grassland cultivation almost always results in a substantial residual effect and the mineralization of N often exceeds the requirement of the succeeding crop. Thus, there is a high risk of nitrate leaching following sward cultivation. Management practices to control nitrate losses include delayed ploughing until late winter or spring, the use of efficient catch crops after ploughing and a reduction in fertilizer N application to cereals after ploughing.
The objective of this paper is to illustrate by examples the importance of management for N fertility building and efficient utilization in crop rotations containing forage legumes
Asymmetries in the CMB anisotropy field
We report on the results from two independent but complementary statistical
analyses of the WMAP first-year data, based on the power spectrum and N-point
correlation functions. We focus on large and intermediate scales (larger than
about 3 degrees) and compare the observed data against Monte Carlo ensembles
with WMAP-like properties. In both analyses, we measure the amplitudes of the
large-scale fluctuations on opposing hemispheres and study the ratio of the two
amplitudes. The power-spectrum analysis shows that this ratio for WMAP, as
measured along the axis of maximum asymmetry, is high at the 95%-99% level
(depending on the particular multipole range included). The axis of maximum
asymmetry of the WMAP data is weakly dependent on the multipole range under
consideration but tends to lie close to the ecliptic axis. In the N-point
correlation function analysis we focus on the northern and southern hemispheres
defined in ecliptic coordinates, and we find that the ratio of the large-scale
fluctuation amplitudes is high at the 98%-99% level. Furthermore, the results
are stable with respect to choice of Galactic cut and also with respect to
frequency band. A similar asymmetry is found in the COBE-DMR map, and the axis
of maximum asymmetry is close to the one found in the WMAP data.Comment: 6 pages, 5 figures; version to appear in ApJ, textual improvements,
added reference
- …