32 research outputs found

    Yrke og kreft i Norge

    Get PDF

    Transcriptional Regulation of Ribosome Components Are Determined by Stress According to Cellular Compartments in Arabidopsis thaliana

    Get PDF
    Plants have to coordinate eukaryotic ribosomes (cytoribosomes) and prokaryotic ribosomes (plastoribosomes and mitoribosomes) production to balance cellular protein synthesis in response to environmental variations. We identified 429 genes encoding potential ribosomal proteins (RP) in Arabidopsis thaliana. Because cytoribosome proteins are encoded by small nuclear gene families, plastid RP by nuclear and plastid genes and mitochondrial RP by nuclear and mitochondrial genes, several transcriptional pathways were attempted to control ribosome amounts. Examining two independent genomic expression datasets, we found two groups of RP genes showing very different and specific expression patterns in response to environmental stress. The first group represents the nuclear genes coding for plastid RP whereas the second group is composed of a subset of cytoribosome genes coding for RP isoforms. By contrast, the other cytoribosome genes and mitochondrial RP genes show less constraint in their response to stress conditions. The two subsets of cytoribosome genes code for different RP isoforms. During stress, the response of the intensively regulated subset leads to dramatic variation in ribosome diversity. Most of RP genes have same promoter structure with two motifs at conserved positions. The stress-response of the nuclear genes coding plastid RP is related with the absence of an interstitial telomere motif known as telo box in their promoters. We proposed a model for the “ribosome code” that influences the ribosome biogenesis by three main transcriptional pathways. The first pathway controls the basal program of cytoribosome and mitoribosome biogenesis. The second pathway involves a subset of cytoRP genes that are co-regulated under stress condition. The third independent pathway is devoted to the control of plastoribosome biosynthesis by regulating both nuclear and plastid genes

    Trace metals in Swedish natural fresh waters

    No full text

    Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells

    No full text
    <div><p>It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells.</p></div
    corecore