625 research outputs found

    Self-Organized Criticality Below The Glass Transition

    Full text link
    We obtain evidence that the dynamics of glassy systems below the glass transition is characterized by self-organized criticality. Using molecular dynamics simulations of a model glass-former we identify clusters of cooperatively jumping particles. We find string-like clusters whose size is power-law distributed not only close to T_c but for ALL temperatures below T_c, indicating self-organized criticality which we interpret as a freezing in of critical behavior.Comment: 4 pages, 3 figure

    Kinetics in one-dimensional lattice gas and Ising models from time-dependent density functional theory

    Full text link
    Time-dependent density functional theory, proposed recently in the context of atomic diffusion and non-equilibrium processes in solids, is tested against Monte Carlo simulation. In order to assess the basic approximation of that theory, the representation of non-equilibrium states by a local equilibrium distribution function, we focus on one-dimensional lattice models, where all equilibrium properties can be worked exactly from the known free energy as a functional of the density. This functional determines the thermodynamic driving forces away from equilibrium. In our studies of the interfacial kinetics of atomic hopping and spin relaxation, we find excellent agreement with simulations, suggesting that the method is useful also for treating more complex problems.Comment: 8 pages, 5 figures, submitted to Phys. Rev.

    Dynamical field theory for glass-forming liquids, self-consistent resummations and time-reversal symmetry

    Full text link
    We analyse the symmetries and the self-consistent perturbative approaches of dynamical field theories for glassforming liquids. In particular, we focus on the time-reversal symmetry (TRS), which is crucial to obtain fluctuation-dissipation relations (FDRs). Previous field theoretical treatment violated this symmetry, whereas others pointed out that constructing symmetry preserving perturbation theories is a crucial and open issue. In this work we solve this problem and then apply our results to the mode-coupling theory of the glass transition (MCT). We show that in the context of dynamical field theories for glass-forming liquids TRS is expressed as a nonlinear field transformation that leaves the action invariant. Because of this nonlinearity, standard perturbation theories generically do not preserve TRS and in particular FDRs. We show how one can cure this problem and set up symmetry-preserving perturbation theories by introducing some auxiliary fields. As an outcome we obtain Schwinger-Dyson dynamical equations that automatically preserve FDRs and that serve as a basis for carrying out symmetry-preserving approximations. We apply our results to MCT, revisiting previous field theory derivations of MCT equations and showing that they generically violate FDR. We obtain symmetry-preserving mode-coupling equations and discuss their advantages and drawbacks. Furthermore, we show, contrary to previous works, that the structure of the dynamic equations is such that the ideal glass transition is not cut off at any finite order of perturbation theory, even in the presence of coupling between current and density. The opposite results found in previous field theoretical works, such as the ones based on nonlinear fluctuating hydrodynamics, were only due to an incorrect treatment of TRS.Comment: 54 pages, 21 figure

    Molecular mode-coupling theory for supercooled liquids: Application to water

    Full text link
    We present mode-coupling equations for the description of the slow dynamics observed in supercooled molecular liquids close to the glass transition. The mode-coupling theory (MCT) originally formulated to study the slow relaxation in simple atomic liquids, and then extended to the analysis of liquids composed by linear molecules, is here generalized to systems of arbitrarily shaped, rigid molecules. We compare the predictions of the theory for the qq-vector dependence of the molecular nonergodicity parameters, calculated by solving numerically the molecular MCT equations in two different approximation schemes, with ``exact'' results calculated from a molecular dynamics simulation of supercooled water. The agreement between theory and simulation data supports the view that MCT succeeds in describing the dynamics of supercooled molecular liquids, even for network forming ones.Comment: 22 pages 4 figures Late

    Modeling of Electron‐Transfer Kinetics in Magnesium Electrolytes: Influence of the Solvent on the Battery Performance

    Get PDF
    The performance of rechargeable magnesium batteries is strongly dependent on the choice of electrolyte. The desolvation of multivalent cations usually goes along with high energy barriers, which can have a crucial impact on the plating reaction. This can lead to significantly higher overpotentials for magnesium deposition compared to magnesium dissolution. In this work we combine experimental measurements with DFT calculations and continuum modelling to analyze Mg deposition in various solvents. Jointly, these methods provide a better understanding of the electrode reactions and especially the magnesium deposition mechanism. Thereby, a kinetic model for electrochemical reactions at metal electrodes is developed, which explicitly couples desolvation to electron transfer and, furthermore, qualitatively takes into account effects of the electrochemical double layer. The influence of different solvents on the battery performance is studied for the state‐of‐the‐art magnesium tetrakis(hexafluoroisopropyloxy)borate electrolyte salt. It becomes apparent that not necessarily a whole solvent molecule must be stripped from the solvated magnesium cation before the first reduction step can take place. For Mg reduction it seems to be sufficient to have one coordination site available, so that the magnesium cation is able to get closer to the electrode surface. Thereby, the initial desolvation of the magnesium cation determines the deposition reaction for mono‐, tri‐ and tetraglyme, whereas the influence of the desolvation on the plating reaction is minor for diglyme and tetrahydrofuran. Overall, we can give a clear recommendation for diglyme to be applied as solvent in magnesium electrolytes

    Frequency dependent specific heat of viscous silica

    Full text link
    We apply the Mori-Zwanzig projection operator formalism to obtain an expression for the frequency dependent specific heat c(z) of a liquid. By using an exact transformation formula due to Lebowitz et al., we derive a relation between c(z) and K(t), the autocorrelation function of temperature fluctuations in the microcanonical ensemble. This connection thus allows to determine c(z) from computer simulations in equilibrium, i.e. without an external perturbation. By considering the generalization of K(t) to finite wave-vectors, we derive an expression to determine the thermal conductivity \lambda from such simulations. We present the results of extensive computer simulations in which we use the derived relations to determine c(z) over eight decades in frequency, as well as \lambda. The system investigated is a simple but realistic model for amorphous silica. We find that at high frequencies the real part of c(z) has the value of an ideal gas. c'(\omega) increases quickly at those frequencies which correspond to the vibrational excitations of the system. At low temperatures c'(\omega) shows a second step. The frequency at which this step is observed is comparable to the one at which the \alpha-relaxation peak is observed in the intermediate scattering function. Also the temperature dependence of the location of this second step is the same as the one of the α−\alpha-peak, thus showing that these quantities are intimately connected to each other. From c'(\omega) we estimate the temperature dependence of the vibrational and configurational part of the specific heat. We find that the static value of c(z) as well as \lambda are in good agreement with experimental data.Comment: 27 pages of Latex, 8 figure

    A phase I study of pemetrexed (LY231514) supplemented with folate and vitamin B12 in Japanese patients with solid tumours

    Get PDF
    The purpose of this study was to determine the maximum tolerated dose (MTD) and recommended dose (RD) of pemetrexed with folate and vitamin B12 supplementation (FA/VB12) in Japanese patients with solid tumours and to investigate the safety, efficacy, and pharmacokinetics of pemetrexed. Eligible patients had incurable solid tumours by standard treatments, a performance status 0–2, and adequate organ function. Pemetrexed from 300 to 1200 mg m−2 was administered as a 10-min infusion on day 1 of a 21-day cycle with FA/VB12. Totally, 31 patients were treated. Dose-limiting toxicities were alanine aminotransferase (ALT) elevation at 700 mg m−2, and infection and skin rash at 1200 mg m−2. The MTD/RD were determined to be 1200/1000 mg m−2, respectively. The most common grade 3/4 toxicities were neutropenia (grade (G) 3:29, G4:3%), leucopenia (G3:13, G4:3%), lympopenia (G3:13%) and ALT elevation (G3:13%). Pemetrexed pharmacokinetics in Japanese were not overtly different from those in western patients. Partial response was achieved for 5/23 evaluable patients (four with non-small cell lung cancer (NSCLC) and one with thymoma). The MTD/RD of pemetrexed were determined to be 1200/1000 mg m−2, respectively, that is, a higher RD than without FA/VB12 (500 mg m−2). Pemetrexed with FA/VB12 showed a tolerable toxicity profile and potent antitumour activity against NSCLC in this study

    Anakinra reduces blood pressure and renal fibrosis in one kidney/DOCA/salt-induced hypertension

    Get PDF
    OBJECTIVE: To determine whether a clinically-utilised IL-1 receptor antagonist, anakinra, reduces renal inflammation, structural damage and blood pressure (BP) in mice with established hypertension. METHODS: Hypertension was induced in male mice by uninephrectomy, deoxycorticosterone acetate (2.4mg/d,s.c.) and replacement of drinking water with saline (1K/DOCA/salt). Control mice received uninephrectomy, a placebo pellet and normal drinking water. 10days post-surgery, mice commenced treatment with anakinra (75mg/kg/d, i.p.) or vehicle (0.9% saline, i.p.) for 11 days. Systolic BP was measured by tail cuff while qPCR, immunohistochemistry and flow cytometry were used to measure inflammatory markers, collagen and immune cell infiltration in the kidneys. RESULTS: By 10 days post-surgery, 1K/DOCA/salt-treated mice displayed elevated systolic BP (148.3+/-2.4mmHg) compared to control mice (121.7+/-2.7mmHg; n=18, P\u3c0.0001). The intervention with anakinra reduced BP in 1K/DOCA/salt-treated mice by approximately 20mmHg (n=16, P\u3c0.05), but had no effect in controls. In 1K/DOCA/salt-treated mice, anakinra modestly reduced ( approximately 30%) renal expression of some (CCL5, CCL2; n=7-8; P\u3c0.05) but not all (ICAM-1, IL-6) inflammatory markers, and had no effect on immune cell infiltration (n=7-8, P \u3e 0.05). Anakinra reduced renal collagen content (n=6, P\u3c0.01) but paradoxically appeared to exacerbate the renal and glomerular hypertrophy (n=8-9, P\u3c0.001) that accompanied 1K/DOCA/salt-induced hypertension. CONCLUSION: Despite its anti-hypertensive and renal anti-fibrotic actions, anakinra had minimal effects on inflammation and leukocyte infiltration in mice with 1K/DOCA/salt-induced hypertension. Future studies will assess whether the anti-hypertensive actions of anakinra are mediated by protective actions in other BP-regulating or salt-handling organs such as the arteries, skin and brain
    • 

    corecore