469 research outputs found
Quantum noise limited and entanglement-assisted magnetometry
We study experimentally the fundamental limits of sensitivity of an atomic
radio-frequency magnetometer. First we apply an optimal sequence of state
preparation, evolution, and the back-action evading measurement to achieve a
nearly projection noise limited sensitivity. We furthermore experimentally
demonstrate that Einstein-Podolsky-Rosen (EPR) entanglement of atoms generated
by a measurement enhances the sensitivity to pulsed magnetic fields. We
demonstrate this quantum limited sensing in a magnetometer utilizing a truly
macroscopic ensemble of 1.5*10^12 atoms which allows us to achieve
sub-femtoTesla/sqrt(Hz) sensitivity.Comment: To appear in Physical Review Letters, April 9 issue (provisionally
Recommended from our members
Association Analysis and Meta-Analysis of Multi-Allelic Variants for Large-Scale Sequence Data
There is great interest in understanding the impact of rare variants in human diseases using large sequence datasets. In deep sequence datasets of >10,000 samples, ~10% of the variant sites are observed to be multi-allelic. Many of the multi-allelic variants have been shown to be functional and disease-relevant. Proper analysis of multi-allelic variants is critical to the success of a sequencing study, but existing methods do not properly handle multi-allelic variants and can produce highly misleading association results. We discuss practical issues and methods to encode multi-allelic sites, conduct single-variant and gene-level association analyses, and perform meta-analysis for multi-allelic variants. We evaluated these methods through extensive simulations and the study of a large meta-analysis of ~18,000 samples on the cigarettes-per-day phenotype. We showed that our joint modeling approach provided an unbiased estimate of genetic effects, greatly improved the power of single-variant association tests among methods that can properly estimate allele effects, and enhanced gene-level tests over existing approaches. Software packages implementing these methods are available online.</div
What matters? - Natur, Technologie und Geschlecht im Diskurs der Präimplantationsdiagnostik
Seit der Einführung der In-vitro-Fertilisation in den 1970er-Jahren sind im Feld der modernen Reproduktionsmedizin eine Reihe weiterer Verfahren entstanden, die die Vorstellungen von Zeugung und Elternschaft verändern. Leihmutterschaft, Präimplantationsdiagnostik, Eizell- und Samenspende lösen die Verbindung von Sexualität und Reproduktion und bieten ein Beispiel für die These der zunehmenden Auflösung von Körper- und Geschlechtergrenzen. Der vorliegende Beitrag leuchtet am Beispiel der Präimplantationsdiagnostik (PID) aus, wie Geschlecht und die Grenze von Natur und Technologie im Zuge dieser Entwicklung neu verhandelt werden. Anhand der Ergebnisse einer Analyse des Diskurses um die PID in Deutschland wird aufgezeigt, wie sich die PID von einer selektiven und mehrheitlich abgelehnten Diagnostik zu einer helfenden Hand für Paare mit Kinderwunsch wandelt und wie diese diskursiven Verschiebungen mit Rückgriff auf die Science and Technology Studies als eine "strategische Naturalisierung" (Thompson) und "Reinigungsarbeit" (Latour) im Diskurs verstanden werden können.New reproductive technologies have changed our understanding of pregnancy and reproduction. In vitro fertilization, preimplantation genetic diagnosis (PGD) and surrogate motherhood have created new forms of family and parenthood. As a result, reproduction is no longer solely regarded as a natural process, and the dualism of nature and technology is becoming fragile. But what kind of nature do we have instead, and what does it mean for gender boundaries? The article outlines the results of a discourse analysis of the debate around PGD in Germany. It shows how PGD is changing from a selective technology into an almost therapeutic procedure and how this change is intertwined with women’s and couples’ desire to have a healthy child. It also raises the issue of how the debate can be described from a hybrid perspective of nature and society. It is argued that the discursive shifts can be understood as a result of a “strategic naturalization” (Thompson) and "the work of purification" (Latour)
Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement
Entangled many body systems have recently attracted significant attention in
various contexts. Among them, spin squeezed atoms and ions have raised interest
in the field of precision measurements, as they allow to overcome quantum noise
of uncorrelated particles. Precise quantum state engineering is also required
as a resource for quantum computation, and spin squeezing can be used to create
multi-partite entangled states. Two-mode spin squeezed systems have been used
for elementary quantum communication protocols. Until now spin squeezing has
been always achieved via generation of entanglement between different atoms of
the ensemble. In this Letter, we demonstrate for the first time ensemble spin
squeezing generated by engineering the quantum state of each individual atom.
More specifically, we entangle the nuclear and electronic spins of
Cesium atoms at room temperature. We verify entanglement and ensemble spin
squeezing by performing quantum tomography on the atomic state.Comment: 5 pages, 3 figure
High quality anti-relaxation coating material for alkali atom vapor cells
We present an experimental investigation of alkali atom vapor cells coated
with a high quality anti-relaxation coating material based on alkenes. The
prepared cells with single compound alkene based coating showed the longest
spin relaxation times which have been measured up to now with room temperature
vapor cells. Suggestions are made that chemical binding of a cesium atom and an
alkene molecule by attack to the C=C bond plays a crucial role in such
improvement of anti-relaxation coating quality
Quantum teleportation between light and matter
Quantum teleportation is an important ingredient in distributed quantum
networks, and can also serve as an elementary operation in quantum computers.
Teleportation was first demonstrated as a transfer of a quantum state of light
onto another light beam; later developments used optical relays and
demonstrated entanglement swapping for continuous variables. The teleportation
of a quantum state between two single material particles (trapped ions) has now
also been achieved. Here we demonstrate teleportation between objects of a
different nature - light and matter, which respectively represent 'flying' and
'stationary' media. A quantum state encoded in a light pulse is teleported onto
a macroscopic object (an atomic ensemble containing 10^12 caesium atoms).
Deterministic teleportation is achieved for sets of coherent states with mean
photon number (n) up to a few hundred. The fidelities are 0.58+-0.02 for n=20
and 0.60+-0.02 for n=5 - higher than any classical state transfer can possibly
achieve. Besides being of fundamental interest, teleportation using a
macroscopic atomic ensemble is relevant for the practical implementation of a
quantum repeater. An important factor for the implementation of quantum
networks is the teleportation distance between transmitter and receiver; this
is 0.5 metres in the present experiment. As our experiment uses propagating
light to achieve the entanglement of light and atoms required for
teleportation, the present approach should be scalable to longer distances.Comment: 23 pages, 8 figures, incl. supplementary informatio
Simulating open quantum systems: from many-body interactions to stabilizer pumping
In a recent experiment, Barreiro et al. demonstrated the fundamental building
blocks of an open-system quantum simulator with trapped ions [Nature 470, 486
(2011)]. Using up to five ions, single- and multi-qubit entangling gate
operations were combined with optical pumping in stroboscopic sequences. This
enabled the implementation of both coherent many-body dynamics as well as
dissipative processes by controlling the coupling of the system to an
artificial, suitably tailored environment. This engineering was illustrated by
the dissipative preparation of entangled two- and four-qubit states, the
simulation of coherent four-body spin interactions and the quantum
non-demolition measurement of a multi-qubit stabilizer operator. In the present
paper, we present the theoretical framework of this gate-based ("digital")
simulation approach for open-system dynamics with trapped ions. In addition, we
discuss how within this simulation approach minimal instances of spin models of
interest in the context of topological quantum computing and condensed matter
physics can be realized in state-of-the-art linear ion-trap quantum computing
architectures. We outline concrete simulation schemes for Kitaev's toric code
Hamiltonian and a recently suggested color code model. The presented simulation
protocols can be adapted to scalable and two-dimensional ion-trap
architectures, which are currently under development.Comment: 27 pages, 9 figures, submitted to NJP Focus on Topological Quantum
Computatio
Understanding the apparent fractional charge of protons in the aqueous electrochemical double layer
A detailed atomic-scale description of the electrochemical interface is essential to the understanding of electrochemical energy transformations. In this work, we investigate the charge of solvated protons at the Pt(111) | H_2O and Al(111) | H_2O interfaces. Using semi-local density-functional theory as well as hybrid functionals and embedded correlated wavefunction methods as higher-level benchmarks, we show that the effective charge of a solvated proton in the electrochemical double layer or outer Helmholtz plane at all levels of theory is fractional, when the solvated proton and solvent band edges are aligned correctly with the Fermi level of the metal (E_F). The observed fractional charge in the absence of frontier band misalignment arises from a significant overlap between the proton and the electron density from the metal surface, and results in an energetic difference between protons in bulk solution and those in the outer Helmholtz plane
- …