9 research outputs found

    Subtle oculomotor difficulties and their relation to motor skill in children with autism spectrum disorder

    Get PDF
    Objectives Sensorimotor difficulties are often reported in autism spectrum disorders (ASD). Visual and motor skills are linked in that the processing of visual information can help in guiding motor movements. The present study investigated oculomotor skill and its relation to general motor skill in ASD by providing a comprehensive assessment of oculomotor control. Methods Fifty children (25 ASD; 25 typically developing [TD]), aged 7–10 years, completed a motor assessment (comprising fine and gross motor tasks) and oculomotor battery (comprising fixation, smooth pursuit, prosaccade and antisaccade tasks). Results No group differences were found for antisaccade errors, nor saccade latencies in prosaccade and antisaccade tasks, but increased saccade amplitude variability was observed in children with ASD, suggesting a reduced consistency in saccade accuracy. Children with ASD also demonstrated poorer fixation stability than their peers and spent less time in pursuit of a moving target. Motor skill was not correlated with saccade amplitude variability. However, regression analyses revealed that motor skill (and not diagnosis) accounted for variance in fixation performance and fast smooth pursuit. Conclusions The findings highlight the importance of considering oculomotor paradigms to inform the functional impact of neuropathologies in ASD and also assessing the presentation of co-occurring difficulties to further our understanding of ASD. Avenues for future research are suggested

    The inter-relationships between cerebral visual impairment, autism and intellectual disability

    No full text
    International audienceFrom birth, vision guides our movement, facilitates social interaction and accords recognition and understanding of the environment. In children, vision underpins development of these skills, and is crucial for typical development. Deficits in visual processing may lead to impairment of cognitive, motor, and social development, placing children at risk of developing features of autism. Severe early onset visual dysfunction accords the greatest risk. Cerebral Visual Impairment (CVI) can lead to disorders of cognitive and social development that resemble Autism Spectrum Disorder (ASD). Similarly, children who appear primarily affected by cognitive and social developmental disorders, can manifest a range of visual and perceptual deficits that may be contributory to their disorder. This dual perspective highlights the need for links between impaired vision and neurodevelopmental disorders to be identified and acted upon by means of applying appropriate social and educational strategies. There is good evidence to show that targeted systematic screening for visual and perceptual impairments, and implementation of long-term management approaches, is now required for all at risk children

    Emotional prosodic change detection in autism Spectrum disorder: an electrophysiological investigation in children and adults

    No full text
    Abstract Background Autism spectrum disorder (ASD) is characterized by atypical behaviors in social environments and in reaction to changing events. While this dyad of symptoms is at the core of the pathology along with atypical sensory behaviors, most studies have investigated only one dimension. A focus on the sameness dimension has shown that intolerance to change is related to an atypical pre-attentional detection of irregularity. In the present study, we addressed the same process in response to emotional change in order to evaluate the interplay between alterations of change detection and socio-emotional processing in children and adults with autism. Methods Brain responses to neutral and emotional prosodic deviancies (mismatch negativity (MMN) and P3a, reflecting change detection and orientation of attention toward change, respectively) were recorded in children and adults with autism and in controls. Comparison of neutral and emotional conditions allowed distinguishing between general deviancy and emotional deviancy effects. Moreover, brain responses to the same neutral and emotional stimuli were recorded when they were not deviants to evaluate the sensory processing of these vocal stimuli. Results In controls, change detection was modulated by prosody: in children, this was characterized by a lateralization of emotional MMN to the right hemisphere, and in adults, by an earlier MMN for emotional deviancy than for neutral deviancy. In ASD, an overall atypical change detection was observed with an earlier MMN and a larger P3a compared to controls suggesting an unusual pre-attentional orientation toward any changes in the auditory environment. Moreover, in children with autism, deviancy detection depicted reduced MMN amplitude. In addition in children with autism, contrary to adults with autism, no modulation of the MMN by prosody was present and sensory processing of both neutral and emotional vocal stimuli appeared atypical. Conclusions Overall, change detection remains altered in people with autism. However, differences between children and adults with ASD evidence a trend toward normalization of vocal processing and of the automatic detection of emotion deviancy with age
    corecore