67 research outputs found

    How culture shapes social cognition deficits in mental disorders. A review

    Get PDF
    Social cognitive skills are indispensable for successful communication with others. Substantial research has determined deficits in these abilities in patients with mental disorders. In neurobiological development and continuing into adulthood, cross-cultural differences in social cognition have been demonstrated. Moreover, symptomatic patterns in mental disorders may vary according to the cultural background of an individual. Cross-cultural studies can thus help in understanding underlying (biological) mechanisms and factors that influence behavior in health and disease. In addition, studies that apply novel paradigms assessing the impact of culture on cognition may benefit and advance neuroscience research. In this review, the authors give an overview of cross-cultural research in the field of social cognition in health and in mental disorders and provide an outlook on future research directions, taking a neuroscience perspective.Action Contro

    Emotion recognition from faces with in- and out-group features in patients with depression

    Get PDF
    Background Previous research has shown that context (e.g. culture) can have an impact on speed and accuracy when identifying facial expressions of emotion. Patients with a major depressive disorder (MDD) are known to have deficits in the identification of facial expressions, tending to give rather stereotypical judgments. While healthy individuals perceive situations which conflict with their own cultural values more negatively, this pattern would be even stronger in MDD patients, as their altered mood results in stronger biases. In this study we investigate the effect of cultural contextual cues on emotion identification in depression. Methods Emotional faces were presented for 100 ms to 34 patients with an MDD and matched controls. Stimulus faces were either covered by a cap and scarf (in-group condition) or by an Islamic headdress (niqab; out-group condition). Speed and accuracy were evaluated. Results Results showed that across groups, fearful faces were identified faster and with higher accuracy in the out-group than in the in-group condition. Sadness was also identified more accurately in the out-group condition. In comparison, happy faces were more accurately (and tended to be faster) identified in the in-group condition. Furthermore, MDD patients were slower, yet not more accurate in identifying expressions of emotion compared to controls. Limitations All patients were on pharmacological treatment. Participants’ political orientation was not included. The experiment differs from real life situations. Conclusion While our results underline findings that cultural context has a general impact on emotion identification, this effect was not found to be more prominent in patients with MDD.NWO016-155-082Action Contro

    Temperature Sequence of Eggs from Oviposition Through Distribution: Processing—Part 2

    Get PDF
    The Egg Safety Action Plan released in 1999 raised questions concerning egg temperature used in the risk assessment model. Therefore, a national study was initiated to determine the internal and external temperature sequence of eggs from oviposition through distribution. Researchers gathered data from commercial egg production, shell egg processing, and distribution facilities. The experimental design was a mixed model with 2 random effects for season and geographic region and a fixed effect for operation type (inline or offline). For this report, internal and external egg temperature data were recorded at specific points during shell egg processing in the winter and summer months. In addition, internal egg temperatures were recorded in pre- and postshell egg processing cooler areas. There was a significant season × geographic region interaction (P \u3c 0.05) for both surface and internal temperatures. Egg temperatures were lower in the winter vs. summer, but eggs gained in temperature from the accumulator to the postshell egg processing cooler. During shell egg processing, summer egg surface and internal temperatures were greater (P\u3c 0.05) than during the winter. When examining the effect of shell egg processing time and conditions, it was found that 2.4 and 3.8°C were added to egg surface temperatures, and 3.3 and 6.0°C were added to internal temperatures in the summer and winter, respectively. Internal egg temperatures were higher (P \u3c 0.05) in the preshell egg processing cooler area during the summer vs. winter, and internal egg temperatures were higher (P \u3c 0.05) in the summer when eggs were ¾ cool (temperature change required to meet USDA-Agricultural Marketing Service storage regulation of 7.2°C) in the postshell egg processing area. However, the cooling rate was not different (P \u3e 0.05) for eggs in the postshell egg processing cooler area in the summer vs. winter. Therefore, these data suggest that season of year and geographic location can affect the temperature of eggs during shell egg processing and should be a component in future assessments of egg safety

    Temperature Sequence of Eggs from Oviposition Through Distribution: Production—Part 1

    Get PDF
    During Egg Safety Action Plan hearings in Washington, DC, many questions were raised concerning the egg temperature (T) used in the risk assessment model. Therefore, a national study was initiated to determine the T of eggs from oviposition through distribution. In part 1; researchers gathered data on internal and surface egg T from commercial egg production facilities. An infrared thermometer was used to rapidly measure surface T, and internal T was determined by probing individual eggs. The main effects were geographic region (state) and season evaluated in a factorial design. Egg T data were recorded in the production facilities in standardized comparisons. Regression analysis (P \u3c 0.0001) showed that the R2 (0.952) between infrared egg surface T and internal T was very high, and validated further use of the infrared thermometer. Hen house egg surface and internal T were significantly influenced by state, season, and the state × season interaction. Mean hen house egg surface T was 27.3 and 23.8°C for summer and winter, respectively, with 29.2 and 26.2°C for egg internal T (P \u3c 0.0001). Hen house eggs from California had the lowest surface and internal T in winter among all the states (P \u3c 0.0001), whereas the highest egg surface T were recorded during summer in North Carolina, Georgia, and Texas, and the highest internal T were recorded from Texas and Georgia. Cooling of warm eggs following oviposition was significantly influenced by season, state, and their interaction. Egg internal T when 3/4 cool was higher in summer vs. winter and higher in North Carolina and Pennsylvania compared with Iowa. The time required to 3/4 cool eggs was greater in winter than summer and greater in Iowa than in other states. These findings showed seasonal and state impacts on ambient T in the hen house that ultimately influenced egg surface and internal T. More important, they showed opportunities to influence cooling rate to improve internal and microbial egg quality

    Air temperature, carbon dioxide, and ammonia assessment inside a commercial cage layer barn with manure-drying tunnels

    Get PDF
    Understanding the air temperature distribution, ammonia (NH3) and carbon dioxide (CO2) levels in poultry housing systems are crucial to poultry health, welfare, and productivity. In this study, 4 Intelligent Portable Monitoring Units and 7 temperature sensors were installed inside and between the cages and above 2 minimum ventilation fans of a commercial stacked-deck cage laying hen house in the Midwest United States (425,000 laying hens) to continuously monitor the interior environment over a 6-month period. During cold conditions (March 12th–May 22nd), there was a variation noted, with barn center temperatures consistently being highest in the longitudinal and lateral direction (P \u3c 0.001) and the top floor deck warmer than the bottom floor (P \u3c 0.05). During hotter conditions (May 23rd–July 26th), the interior thermal environment was more uniform than during the winter, resulting in a difference only in the longitudinal direction. The daily CO2 and NH3 concentrations were 400 to 4,981 ppm and 0 to 42.3 ppm among the 4 sampling locations, respectively. Both CO2 and NH3 decreased linearly with increasing outside temperatures. The mean NH3 and CO2 concentrations varied with sampling locations and with the outside temperatures (P \u3c 0.001). For CO2, the minimum ventilation sidewall had lower values than those measured in the barn’s center (P \u3c 0.05) during cold weather, while the barn center and the manure room sidewall consistently measured the highest concentrations during warmer weather (P \u3c 0.05). For NH3, the tunnel ventilation inlet end consistently had the lowest daily concentrations, whereas the in-cage and manure drying tunnel sidewall locations measured the highest concentrations (P \u3c 0.001). Higher NH3 and CO2 concentrations were recorded within the cage than in the cage aisle (P \u3c 0.05). The highest NH3 concentration of 42 ppm was recorded above the minimum exhaust fan adjacent to the manure drying tunnel, which indicated that higher pressure (back pressure) in the manure drying tunnel allowed air leakage back into the production area through nonoperating sidewall fan shutters

    Temperature Sequence of Eggs from Oviposition Through Distribution: Transportation—Part 3

    Get PDF
    The Egg Safety Action Plan released in 1999 raised many questions concerning egg temperature used in the risk assessment model. Therefore, a national study by researchers in California, Connecticut, Georgia, Iowa, Illinois, North Carolina, Pennsylvania, and Texas was initiated to determine the internal and external temperature sequence of eggs from oviposition through distribution. Researchers gathered data from commercial egg production, processing, and distribution facilities. The experimental design was a mixed model with random effects for season and a fixed effect for duration of the transport period (long or short haul). It was determined that processors used refrigerated transport trucks (REFER) as short-term storage (STS) in both the winter and summer. Therefore, this summary of data obtained from REFER also examines the impact of their use as STS. Egg temperature data were recorded for specific loads of eggs during transport to point of resale or distribution to retailers. To standardize data comparisons between loads, they were segregated between long and short hauls. The summer egg temperatures were higher in the STS and during delivery. Egg temperature was not significantly reduced during the STS phase. Egg temperature decreases were less (P \u3c 0.0001) during short delivery hauls 0.6°C than during long hauls 7.8°C. There was a significant season × delivery interaction (P \u3c 0.05) for the change in the temperature differences between the egg and ambient temperature indicated as the cooling potential. This indicated that the ambient temperature during long winter deliveries had the potential to increase egg temperature. The REFER used as STS did not appreciably reduce internal egg temperature. These data suggest that the season of year affects the temperature of eggs during transport. Eggs are appreciably cooled on the truck, during the delivery phase, which was contrary to the original supposition that egg temperatures would remain static during refrigerated transport. These data indicate that refrigerated transport should be a component in future assessments of egg safety

    Masked ambiguity – Emotion identification in schizophrenia and major depressive disorder

    Get PDF
    Both patients with schizophrenia and with a major depressive disorder (MDD) display deficits in identifying facial expressions of emotion during acute phases of their illness. However, specific deficit patterns have not yet been reliably demonstrated. Tasks that employ emotionally ambiguous stimuli have recently shown distinct deficit patterns in patients with schizophrenia compared to other mental disorders as well as healthy controls. We here investigate whether a task which uses an ambiguous Japanese (Noh) mask and a corresponding human stimulus generates distinctive emotion attribution patterns in thirty-two Caucasian patients with schizophrenia, matched MDD patients and healthy controls. Results show that patients with schizophrenia displayed reaction time disadvantages compared to healthy controls while identifying sadness and anger. MDD patients were more likely to label stimuli with basic compared to subtle emotional expressions. Moreover, they showed more difficulties assigning emotions to the human stimulus than to the Noh mask. IQ, age and cognitive functioning did not modulate these results. Because overall group differences were not observed, this task is not suitable for diagnosing patients. However, the subtle differences that did emerge might give therapists handles that can be used in therapy.Action Contro

    Consensus Paper: Cerebellum and Social Cognition.

    Get PDF
    The traditional view on the cerebellum is that it controls motor behavior. Although recent work has revealed that the cerebellum supports also nonmotor functions such as cognition and affect, only during the last 5 years it has become evident that the cerebellum also plays an important social role. This role is evident in social cognition based on interpreting goal-directed actions through the movements of individuals (social "mirroring") which is very close to its original role in motor learning, as well as in social understanding of other individuals' mental state, such as their intentions, beliefs, past behaviors, future aspirations, and personality traits (social "mentalizing"). Most of this mentalizing role is supported by the posterior cerebellum (e.g., Crus I and II). The most dominant hypothesis is that the cerebellum assists in learning and understanding social action sequences, and so facilitates social cognition by supporting optimal predictions about imminent or future social interaction and cooperation. This consensus paper brings together experts from different fields to discuss recent efforts in understanding the role of the cerebellum in social cognition, and the understanding of social behaviors and mental states by others, its effect on clinical impairments such as cerebellar ataxia and autism spectrum disorder, and how the cerebellum can become a potential target for noninvasive brain stimulation as a therapeutic intervention. We report on the most recent empirical findings and techniques for understanding and manipulating cerebellar circuits in humans. Cerebellar circuitry appears now as a key structure to elucidate social interactions

    Effects of carbon dioxide on turkey poult performance and behavior

    Get PDF
    Appropriate ventilation of poultry facilities is critical for achieving optimum performance. Ventilation promotes good air exchange to remove harmful gases, excessive heat, moisture, and particulate matter. In a turkey brooder barn, carbon dioxide (CO2) may be present at higher levels during the winter due to reduced ventilation rates to maintain high temperatures. This higher CO2 may negatively affect turkey poult performance. Therefore, the objective of this study was to evaluate the effects of subjecting tom turkey poults (commercial Large White Hybrid Converters) to different constant levels of atmospheric CO2 on their growth performance and behavior. In three consecutive replicate trials, a total of 552 poults were weighed post-hatch and randomly placed in 3 environmental control chambers, with 60 (Trial 1) and 62 (Trials 2 and 3) poults housed per chamber. They were reared with standard temperature and humidity levels for 3 wks. The poults were exposed to 3 different fixed CO2 concentrations of 2,000, 4,000, and 6,000 ppm throughout each trial. Following each trial (replicate), the CO2 treatments were switched and assigned to a different chamber in order to expose each treatment to each chamber. At the end of each trial, all poults were sent to a local turkey producer to finish grow out. For each trial, individual body weight and group feed intake were measured, and mortality and behavioral movement were recorded. Wk 3 and cumulative body weight gain of poults housed at 2,000 ppm CO2 was greater (P \u3c 0.05) than those exposed to 4,000 and 6,000 ppm CO2. Feed intake and feed conversion were unaffected by the different CO2 concentrations. No significant difference in poult mortality was found between treatments. In addition, no effect of CO2 treatments was evident in the incidence of spontaneous turkey cardiomyopathy for turkeys processed at 19 wk of age. Poults housed at the lower CO2 level (2,000 ppm) demonstrated reduced movement compared with those exposed to the 2 higher CO2 concentrations
    corecore