64 research outputs found

    Van der Waals heterostructures

    Full text link
    Research on graphene and other two-dimensional atomic crystals is intense and likely to remain one of the hottest topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The first - already remarkably complex - such heterostructures (referred to as 'van der Waals') have recently been fabricated and investigated revealing unusual properties and new phenomena. Here we review this emerging research area and attempt to identify future directions. With steady improvement in fabrication techniques, van der Waals heterostructures promise a new gold rush, rather than a graphene aftershock

    Electronic properties of the MoS2-WS2 heterojunction

    Get PDF
    We study the electronic structure of a heterojunction made of two monolayers of MoS2 and WS2. Our first-principles density functional calculations show that, unlike in the homogeneous bilayers, the heterojunction has an optically active band gap, smaller than the ones of MoS2 and WS2 single layers. We find that the optically active states of the maximum valence and minimum conduction bands are localized on opposite monolayers, and thus the lowest energy electron-holes pairs are spatially separated. Our findings portray the MoS2-WS2 bilayer as a prototypical example for band-gap engineering of atomically thin two-dimensional semiconducting heterostructures.This work has been financially supported by MEC-Spain (Grants FIS2010-21883-C02-01, and CONSOLIDER CSD2007-0010) and Generalitat Valenciana, Grant Prometeo 2012-11

    Stability of finite-size argon thin film coating single wall carbon nanotube

    No full text
    The structure and the dynamics of the argon thin film coating (15,4) and (12,12) carbon nanotubes have been studied in a series of molecular dynamic simulations. In the studied temperature regime, the argon atoms in the thin film were well localized. Structural changes and diffusion process inside the argon layers were not been observed. The influence of the chirality and the radius of the nanotube to the cluster properties is also reported
    corecore