21 research outputs found

    Increased cortical surface area and gyrification following long-term survival from early monocular enucleation

    Get PDF
    AbstractPurposeRetinoblastoma is typically diagnosed before 5 years of age and is often treated by enucleation (surgical removal) of the cancerous eye. Here, we sought to characterize morphological changes of the cortex following long-term survival from early monocular enucleation.MethodsNine adults with early right-eye enucleation (≤48 months of age) due to retinoblastoma were compared to 18 binocularly intact controls. Surface area, cortical thickness, and gyrification estimates were obtained from T1 weighted images and group differences were examined.ResultsEarly monocular enucleation was associated with increased surface area and/or gyrification in visual (i.e., V1, inferior temporal), auditory (i.e., supramarginal), and multisensory (i.e., superior temporal, inferior parietal, superior parietal) cortices compared with controls. Visual cortex increases were restricted to the right hemisphere contralateral to the remaining eye, consistent with previous subcortical data showing asymmetrical lateral geniculate nucleus volume following early monocular enucleation.ConclusionsAltered morphological development of visual, auditory, and multisensory regions occurs subsequent to long-time survival from early eye loss

    Sperm selection by thermotaxis improves ICSI outcome in mice

    No full text
    Abstract The ejaculate is a heterogeneous pool of spermatozoa containing only a small physiologically adequate subpopulation for fertilization. As there is no method to isolate this subpopulation, its specific characteristics are unknown. This is one of the main reasons why we lack effective tools to identify male infertility and for the low efficiency of assisted reproductive technologies. The aim of this study was to improve ICSI outcome by sperm selection through thermotaxis. Here we show that a specific subpopulation of mouse and human spermatozoa can be selected in vitro by thermotaxis and that this subpopulation is the one that enters the fallopian tube in mice. Further, we confirm that these selected spermatozoa in mice and humans show a much higher DNA integrity and lower chromatin compaction than unselected sperm, and in mice, they give rise to more and better embryos through intracytoplasmic sperm injection, doubling the number of successful pregnancies. Collectively, our results indicate that a high quality sperm subpopulation is selected in vitro by thermotaxis and that this subpopulation is also selected in vivo within the fallopian tube possibly by thermotaxis
    corecore