1,970 research outputs found

    Modeling a Sensor to Improve its Efficacy

    Get PDF
    Robots rely on sensors to provide them with information about their surroundings. However, high-quality sensors can be extremely expensive and cost-prohibitive. Thus many robotic systems must make due with lower-quality sensors. Here we demonstrate via a case study how modeling a sensor can improve its efficacy when employed within a Bayesian inferential framework. As a test bed we employ a robotic arm that is designed to autonomously take its own measurements using an inexpensive LEGO light sensor to estimate the position and radius of a white circle on a black field. The light sensor integrates the light arriving from a spatially distributed region within its field of view weighted by its Spatial Sensitivity Function (SSF). We demonstrate that by incorporating an accurate model of the light sensor SSF into the likelihood function of a Bayesian inference engine, an autonomous system can make improved inferences about its surroundings. The method presented here is data-based, fairly general, and made with plug-and play in mind so that it could be implemented in similar problems.Comment: 18 pages, 8 figures, submitted to the special issue of "Sensors for Robotics

    Interactions of satellite-speed helium atoms with satellite surfaces. 3: Drag coefficients from spatial and energy distributions of reflected helium atoms

    Get PDF
    Spatial and energy distributions of helium atoms scattered from an anodized 1235-0 aluminum surface as well as the tangential and normal momentum accommodation coefficients calculated from these distributions are reported. A procedure for calculating drag coefficients from measured values of spatial and energy distributions is given. The drag coefficient calculated for a 6061 T-6 aluminum sphere is included

    Composite-fermionization of bosons in rapidly rotating atomic traps

    Full text link
    The non-perturbative effect of interaction can sometimes make interacting bosons behave as though they were free fermions. The system of neutral bosons in a rapidly rotating atomic trap is equivalent to charged bosons coupled to a magnetic field, which has opened up the possibility of fractional quantum Hall effect for bosons interacting with a short range interaction. Motivated by the composite fermion theory of the fractional Hall effect of electrons, we test the idea that the interacting bosons map into non-interacting spinless fermions carrying one vortex each, by comparing wave functions incorporating this physics with exact wave functions available for systems containing up to 12 bosons. We study here the analogy between interacting bosons at filling factors Îœ=n/(n+1)\nu=n/(n+1) with non-interacting fermions at Μ∗=n\nu^*=n for the ground state as well as the low-energy excited states and find that it provides a good account of the behavior for small nn, but interactions between fermions become increasingly important with nn. At Îœ=1\nu=1, which is obtained in the limit n→∞n\rightarrow \infty, the fermionization appears to overcompensate for the repulsive interaction between bosons, producing an {\em attractive} interactions between fermions, as evidenced by a pairing of fermions here.Comment: 8 pages, 3 figures. Submitted to Phys. Rev.

    Quantum computers can search arbitrarily large databases by a single query

    Full text link
    This paper shows that a quantum mechanical algorithm that can query information relating to multiple items of the database, can search a database in a single query (a query is defined as any question to the database to which the database has to return a (YES/NO) answer). A classical algorithm will be limited to the information theoretic bound of at least O(log N) queries (which it would achieve by using a binary search).Comment: Several enhancements to the original pape

    Objectively Measured Physical Activity Varies by Task and Accelerometer Location in Younger and Older Adults

    Get PDF
    Please refer to the pdf version of the abstract located adjacent to the title

    Origins of the Combinatorial Basis of Entropy

    Full text link
    The combinatorial basis of entropy, given by Boltzmann, can be written H=N−1ln⁥WH = N^{-1} \ln \mathbb{W}, where HH is the dimensionless entropy, NN is the number of entities and W\mathbb{W} is number of ways in which a given realization of a system can occur (its statistical weight). This can be broadened to give generalized combinatorial (or probabilistic) definitions of entropy and cross-entropy: H=Îș(ϕ(W)+C)H=\kappa (\phi(\mathbb{W}) +C) and D=−Îș(ϕ(P)+C)D=-\kappa (\phi(\mathbb{P}) +C), where P\mathbb{P} is the probability of a given realization, ϕ\phi is a convenient transformation function, Îș\kappa is a scaling parameter and CC an arbitrary constant. If W\mathbb{W} or P\mathbb{P} satisfy the multinomial weight or distribution, then using ϕ(⋅)=ln⁥(⋅)\phi(\cdot)=\ln(\cdot) and Îș=N−1\kappa=N^{-1}, HH and DD asymptotically converge to the Shannon and Kullback-Leibler functions. In general, however, W\mathbb{W} or P\mathbb{P} need not be multinomial, nor may they approach an asymptotic limit. In such cases, the entropy or cross-entropy function can be {\it defined} so that its extremization ("MaxEnt'' or "MinXEnt"), subject to the constraints, gives the ``most probable'' (``MaxProb'') realization of the system. This gives a probabilistic basis for MaxEnt and MinXEnt, independent of any information-theoretic justification. This work examines the origins of the governing distribution P\mathbb{P}.... (truncated)Comment: MaxEnt07 manuscript, version 4 revise

    Maximum Joint Entropy and Information-Based Collaboration of Automated Learning Machines

    Full text link
    We are working to develop automated intelligent agents, which can act and react as learning machines with minimal human intervention. To accomplish this, an intelligent agent is viewed as a question-asking machine, which is designed by coupling the processes of inference and inquiry to form a model-based learning unit. In order to select maximally-informative queries, the intelligent agent needs to be able to compute the relevance of a question. This is accomplished by employing the inquiry calculus, which is dual to the probability calculus, and extends information theory by explicitly requiring context. Here, we consider the interaction between two question-asking intelligent agents, and note that there is a potential information redundancy with respect to the two questions that the agents may choose to pose. We show that the information redundancy is minimized by maximizing the joint entropy of the questions, which simultaneously maximizes the relevance of each question while minimizing the mutual information between them. Maximum joint entropy is therefore an important principle of information-based collaboration, which enables intelligent agents to efficiently learn together.Comment: 8 pages, 1 figure, to appear in the proceedings of MaxEnt 2011 held in Waterloo, Canad

    The Spatial Sensitivity Function of a Light Sensor

    Full text link
    The Spatial Sensitivity Function (SSF) is used to quantify a detector's sensitivity to a spatially-distributed input signal. By weighting the incoming signal with the SSF and integrating, the overall scalar response of the detector can be estimated. This project focuses on estimating the SSF of a light intensity sensor consisting of a photodiode. This light sensor has been used previously in the Knuth Cyberphysics Laboratory on a robotic arm that performs its own experiments to locate a white circle in a dark field (Knuth et al., 2007). To use the light sensor to learn about its surroundings, the robot's inference software must be able to model and predict the light sensor's response to a hypothesized stimulus. Previous models of the light sensor treated it as a point sensor and ignored its spatial characteristics. Here we propose a parametric approach where the SSF is described by a mixture of Gaussians (MOG). By performing controlled calibration experiments with known stimulus inputs, we used nested sampling to estimate the SSF of the light sensor using an MOG model with the number of Gaussians ranging from one to five. By comparing the evidence computed for each MOG model, we found that one Gaussian is sufficient to describe the SSF to the accuracy we require. Future work will involve incorporating this more accurate SSF into the Bayesian machine learning software for the robotic system and studying how this detailed information about the properties of the light sensor will improve robot's ability to learn.Comment: Published in MaxEnt 200

    Origin of Complex Quantum Amplitudes and Feynman's Rules

    Full text link
    Complex numbers are an intrinsic part of the mathematical formalism of quantum theory, and are perhaps its most mysterious feature. In this paper, we show that the complex nature of the quantum formalism can be derived directly from the assumption that a pair of real numbers is associated with each sequence of measurement outcomes, with the probability of this sequence being a real-valued function of this number pair. By making use of elementary symmetry conditions, and without assuming that these real number pairs have any other algebraic structure, we show that these pairs must be manipulated according to the rules of complex arithmetic. We demonstrate that these complex numbers combine according to Feynman's sum and product rules, with the modulus-squared yielding the probability of a sequence of outcomes.Comment: v2: Clarifications, and minor corrections and modifications. Results unchanged. v3: Minor changes to introduction and conclusio
    • 

    corecore