1,243 research outputs found

    Dynamic simulation of management events for assessing impacts of climate change on pre-alpine grassland productivity

    Get PDF
    The productivity of permanent temperate cut grasslands is mainly driven by weather, soil characteristics, botanical composition and management. To adapt management to climate change, adjusting the cutting dates to reflect earlier onset of growth and expansion of the vegetation period is particularly important. Simulations of cut grassland productivity under climate change scenarios demands management settings to be dynamically derived from actual plant development rather than using static values derived from current management operations. This is even more important in the alpine region, where the predicted temperature increase is twice as high as compared to the global or Northern Hemispheric average. For this purpose, we developed a dynamic management module that provides timing of cutting and manuring events when running the biogeochemical model LandscapeDNDC. We derived the dynamic management rules from long-term harvest measurements and monitoring data collected at pre-alpine grassland sites located in S Germany and belonging to the TERENO monitoring network. We applied the management module for simulations of two grassland sites covering the period 2011–2100 and driven by scenarios that reflect the two representative concentration pathways (RCP) 4.5 and 8.5 and evaluated yield developments of different management regimes. The management module was able to represent timing of current management operations in high agreement with several years of field observations (r2 > 0.88). Even more, the shift of the first cutting dates scaled to a +1 ◦C temperature increase simulated with the climate change scenarios (− 9.1 to − 17.1 days) compared well to the shift recorded by the German Weather Service (DWD) in the study area from 1991− 2016 (− 9.4 to − 14.0 days). In total, the shift in cutting dates and expansion of the growing season resulted in 1− 2 additional cuts per year until 2100. Thereby, climate change increased yields of up to 6 % and 15 % in the RCP 4.5 and 8.5 scenarios with highest increases mainly found for dynamically adapted grassland management going along with increasing fertilization rates. In contrast, no or only minor yield increases were associated with simulations restricted to fertilization rates of 170 kg N ha− 1 yr− 1 as required by national legislations. Our study also shows that yields significantly decreased in drought years, when soil moisture is limiting plant growth but due to comparable high precipitation and water holding capacity of soils, this was observed mainly in the RCP 8.5 scenario in the last decades of the century

    Effects of reactive nitrogen in Europe

    Get PDF

    Cold season soil NO fluxes from a temperate forest: drivers and contribution to annual budgets

    Get PDF
    Soils, and here specifically acidic forest soils exposed to high rates of atmospheric nitrogen deposition, are a significant source for the secondary greenhouse gas nitric oxide (NO). However, as flux estimates are mainly based on measurements during the vegetation period, annual NO emissions budgets may hold uncertainty as cold season soil NO fluxes have rarely been quantified. Here we analyzed cold season soil NO fluxes and potential environmental drivers on the basis of the most extensive database on forest soil NO fluxes obtained at the Höglwald Forest, Germany, spanning the years 1994 to 2010. On average, the cold season (daily average air temperature <3 °C) contributed to 22% of the annual soil NO budget, varying from 13% to 41% between individual cold seasons. Temperature was the main controlling factor of the cold season NO fluxes, whereas during freeze-thaw cycles soil moisture availability determined NO emission rates. The importance of cold season soil NO fluxes for annual NO fluxes depended positively on the length of the cold season, but responded negatively to frost events. Snow cover did not significantly affect cold season soil NO fluxes. Cold season NO fluxes significantly correlated with cold season soil carbon dioxide (CO2) emissions. During freeze-thaw periods strong positive correlations between NO and N2O fluxes were observed, though stimulation of NO fluxes by freeze-thaw was by far less pronounced as compared to N2O. Except for freeze-thaw periods NO fluxes significantly exceeded those for N2O during the cold season period. We conclude that in temperate forest ecosystems cold season NO emissions can contribute substantially to the annual NO budget and this contribution is significantly higher in years with long lasting but mild (less frost events) cold seasons

    Treibhausgasemissionen aus der Landwirtschaft

    Get PDF
    • …
    corecore