C and N trace gas emissions from tropical forest ecosystems: measurements, driving forces and upscaling

> Ralf Kiese Ralf.kiese@imk.fzk.de

> Christian Werner Klaus Butterbach-Bahl

Institute for Meteorology and Climate Research Atmospheric Environmental Research (IMK-IFU) Karlsruhe Research Center Germany

Workshop "Adaptation of Kilimanjaro ecosystems to climate and land use change", 26.02.2008, Moshi, Tanzania)

Motivation

Global N ₂ O	N ₂ O-sources	Relative contribution to all identified sources [%]	Tg (10 ¹² g) N ₂ O-N a^{-1}	
buugei	Natural N ₂ O sources			
	Ocean	18.5	3.0	(1.0-5.0)
	Tropical soils			
	Wet forests	18.5	3.0	(2.2-3.7)
	Dry savannas	6.2	1.0	(0.5-2.0)
	Temperate soils			
	Forests	6.2	1.0	(0.1-2.0)
	Grasslands	6.2	1.0	(0.5-2.0)
	Anthropogenic N ₂ O sources			
	Agricultural soils	20.4	3.3	(0.6-14.8)
	Biomass burning	3.1	0.5	(0.2-1.0)
	Industrial sources	8.0	1.3	(0.7-1.8)
	Cattle and feedlots	13.0	2.1	(0.6-3.1)
	Total N ₂ O sources		16.2	(6.4-34.4)
	N ₂ O sinks and atmospheri	ic increase	10.2	
	Stratospheric destruction		12.3	(9.0-16.0)
	Atmospheric increase		39_	(31.4.7)

IPPC, 2001

Integrated interdisciplinary research concept

IMK-IFU measuring sites in the tropics

Case study "Wet Tropics Australia"

Field campaigns

More field campaigns

Kiese & Butterbach-Bahl, 2002, Soil Biol. Biochem.; Kiese et al., 2003: Global Biogeochem. Cycl.; Butterbach-Bahl et al., 2004, Global Biogeochem. Cycles.

Process studies – Nitrification and N₂O emissions

DNDC model applications on site and regional scale

Upscaling of N₂O emissions – model GIS approach

Upscaling of CH₄ emissions – model GIS approach

___ 10 cm

▲ 15 cm _♦_ 30 cm

1 Jan 1 Mar 1 May 1 Jul 1 Sep 1 Nov

Kiese et al., 2008, Plant and Soil

80

60

1 Nov

2002

2001

CH₄ Uptake [µg CH₄ m⁻² h⁻¹]

More measuring sites for model application on global scale

Add. measuring sites for model testing and application on global scale

Werner et al., 2007, Global biogeoch Cycl; Werner et al., 2007 J Geophys Res; Werner et al., 2007 Plant and Soil

Coupled model - GIS approach

Global N₂O emission inventory (1991-2000)

Land use change and C and N trace gas emissions

Land use change and C and N trace gas emissions

Full ecosystem GHG balance e.g. tropical forest Australia

Greenhouse gas balance (CO ₂ -/ CH ₄ -/ N ₂ O) of tropical rain forests		Global warming potential ¹⁾	Greenhouse gas balance of tropical rain forests expressed in CO ₂ -C-equivalents	
CO ₂ -accumulation	$710 \pm 340^{(2)}$	1	710 ± 340	Sink
	kg CO ₂ -C ha ⁻¹ y ⁻ 1		kg CO ₂ -C ha ⁻¹ y ⁻ 1	-710 -69
CH ₄ -consumption	$4 \pm 1.8^{(3)}$	23	69 ± 31	Source
	kg CH ₄ -C ha ⁻¹ y ⁻¹	(17.2)	kg CO ₂ -C ha ⁻¹ y ⁻ 1	
N ₂ O-emission	$2.4 \pm 1.4^{(4)}$	296	304.6 ± 177.7	Ecosys.
	kg N ₂ O-N ha ⁻¹ y ⁻¹	(126.9)	kg CO ₂ -C ha ⁻¹ y ⁻ 1	sink -474.4

Climate and land use change at Mt. Kilimanjaro

