284 research outputs found

    Control of spatiotemporal rogue waves by harmonic pump modulation in a semiconductor laser with a saturable absorber

    Get PDF
    Through numerical simulations, statistical and dynamical properties of extreme events in a broad-area semiconductor laser with intracavity saturable absorber are investigated. By inclusion of a diffusion coefficient for the field, formation of rogue waves in a state of extended turbulence is studied and shown to be affected by harmonic perturbations. In particular, we propose a control technique based on periodic modulation of the pump parameter which can either drive the state of the system closer to or away from the chaotic attractors respectively enhancing or suppressing the generation of rogue waves. By statistical and dynamical analysis of the events in terms of intensity and optical gain, we show that when the system is under resonant modulation with frequency close to that of the dominant oscillations in the turbulent state (which is equal to the relaxation oscillation frequency typical of semiconductor lasers), more rogue waves are triggered with larger intensities and shorter lifetimes. On the other hand, off-resonant modulations restrain the formation of rogue waves where they appear in lower intensities and longer lifetimes. An example of special cases where the proposed scheme can completely forbid or allow the emission of rogue waves is also presented

    Proteomic identification of in vivo substrates for matrix metalloproteinases 2 and 9 reveals a mechanism for resolution of inflammation.

    Get PDF
    Clearance of allergic inflammatory cells from the lung through matrix metalloproteinases (MMPs) is necessary to prevent lethal asphyxiation, but mechanistic insight into this essential homeostatic process is lacking. In this study, we have used a proteomics approach to determine how MMPs promote egression of lung inflammatory cells through the airway. MMP2- and MMP9-dependent cleavage of individual Th2 chemokines modulated their chemotactic activity; however, the net effect of complementing bronchoalveolar lavage fluid of allergen-challenged MMP2(-/-)/MMP9(-/-) mice with active MMP2 and MMP9 was to markedly enhance its overall chemotactic activity. In the bronchoalveolar fluid of MMP2(-/-)/MMP9(-/-) allergic mice, we identified several chemotactic molecules that possessed putative MMP2 and MMP9 cleavage sites and were present as higher molecular mass species. In vitro cleavage assays and mass spectroscopy confirmed that three of the identified proteins, Ym1, S100A8, and S100A9, were substrates of MMP2, MMP9, or both. Function-blocking Abs to S100 proteins significantly altered allergic inflammatory cell migration into the alveolar space. Thus, an important effect of MMPs is to differentially modify chemotactic bioactivity through proteolytic processing of proteins present in the airway. These findings provide a molecular mechanism to explain the enhanced clearance of lung inflammatory cells through the airway and reveal a novel approach to target new therapies for asthma

    New report of Pullimosina heteroneura (Dip.: Sphaeroceridae) from Iran

    Get PDF
    During a study on the pests of button mushrooms in the city of Kermanshah, the sphaerocerid species of Pullimosina heteroneura (Haliday) was collected from mushroom culture media. This species is a new record for the Iranian insect fauna

    High-Fat Diet with Acyl-Ghrelin Treatment Leads to Weight Gain with Low Inflammation, High Oxidative Capacity and Normal Triglycerides in Rat Muscle

    Get PDF
    Obesity is associated with muscle lipid accumulation. Experimental models suggest that inflammatory cytokines, low mitochondrial oxidative capacity and paradoxically high insulin signaling activation favor this alteration. The gastric orexigenic hormone acylated ghrelin (A-Ghr) has antiinflammatory effects in vitro and it lowers muscle triglycerides while modulating mitochondrial oxidative capacity in lean rodents. We tested the hypothesis that A-Ghr treatment in high-fat feeding results in a model of weight gain characterized by low muscle inflammation and triglycerides with high muscle mitochondrial oxidative capacity. A-Ghr at a non-orexigenic dose (HFG: twice-daily 200-µg s.c.) or saline (HF) were administered for 4 days to rats fed a high-fat diet for one month. Compared to lean control (C) HF had higher body weight and plasma free fatty acids (FFA), and HFG partially prevented FFA elevation (P<0.05). HFG also had the lowest muscle inflammation (nuclear NFkB, tissue TNF-alpha) with mitochondrial enzyme activities higher than C (P<0.05 vs C, P = NS vs HF). Under these conditions HFG prevented the HF-associated muscle triglyceride accumulation (P<0.05). The above effects were independent of changes in redox state (total-oxidized glutathione, glutathione peroxidase activity) and were not associated with changes in phosphorylation of AKT and selected AKT targets. Ghrelin administration following high-fat feeding results in a novel model of weight gain with low inflammation, high mitochondrial enzyme activities and normalized triglycerides in skeletal muscle. These effects are independent of changes in tissue redox state and insulin signaling, and they suggest a potential positive metabolic impact of ghrelin in fat-induced obesity

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    The data set development for the National Spinal Cord Injury Registry of Iran (NSCIR-IR): progress toward improving the quality of care

    Get PDF
    STUDY DESIGN: Descriptive study. OBJECTIVES: The aim of this manuscript is to describe the development process of the data set for the National Spinal Cord Injury Registry of Iran (NSCIR-IR). SETTING: SCI community in Iran. METHODS: The NSCIR-IR data set was developed in 8 months, from March 2015 to October 2015. An expert panel of 14 members was formed. After a review of data sets of similar registries in developed countries, the selection and modification of the basic framework were performed over 16 meetings, based on the objectives and feasibility of the registry. RESULTS: The final version of the data set was composed of 376 data elements including sociodemographic, hospital admission, injury incidence, prehospital procedures, emergency department visit, medical history, vertebral injury, spinal cord injury details, interventions, complications, and discharge data. It also includes 163 components of the International Standards for the Neurologic Classification of Spinal Cord Injury (ISNCSCI) and 65 data elements related to quality of life, pressure ulcers, pain, and spasticity. CONCLUSION: The NSCIR-IR data set was developed in order to meet the quality improvement objectives of the registry. The process was centered around choosing the data elements assessing care provided to individuals in the acute and chronic phases of SCI in hospital settings. The International Spinal Cord Injury Data Set was selected as a basic framework, helped by comparison with data from other countries. Expert panel modifications facilitated the implementation of the registry process with the current clinical workflow in hospitals

    Mucosal sensitization to German cockroach involves protease-activated receptor-2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergic asthma is on the rise in developed countries. A common characteristic of allergens is that they contain intrinsic protease activity, and many have been shown to activate protease-activated receptor (PAR)-2 <it>in vitro</it>. The role for PAR-2 in mediating allergic airway inflammation has not been assessed using a real world allergen.</p> <p>Methods</p> <p>Mice (wild type or PAR-2-deficient) were sensitized to German cockroach (GC) feces (frass) or protease-depleted GC frass by either mucosal exposure or intraperitoneal injection and measurements of airway inflammation (IL-5, IL-13, IL-17A, and IFNγ levels in the lung, serum IgE levels, cellular infiltration, mucin production) and airway hyperresponsiveness were performed.</p> <p>Results</p> <p>Following systemic sensitization, GC frass increased airway hyperresponsiveness, Th2 cytokine release, serum IgE levels, cellular infiltration and mucin production in wild type mice. Interestingly, PAR-2-deficient mice had similar responses as wild type mice. Since these data were in direct contrast to our finding that mucosal sensitization with GC frass proteases regulated airway hyperresponsiveness and mucin production in BALB/c mice (Page et. al. 2007 Resp Res 8:91), we backcrossed the PAR-2-deficient mice into the BALB/c strain. Sensitization to GC frass could now occur via the more physiologically relevant method of intratracheal inhalation. PAR-2-deficient mice had significantly reduced airway hyperresponsiveness, Th2 and Th17 cytokine release, serum IgE levels, and cellular infiltration compared to wild type mice when sensitization to GC frass occurred through the mucosa. To confirm the importance of mucosal exposure, mice were systemically sensitized to GC frass or protease-depleted GC frass via intraperitoneal injection. We found that removal of proteases from GC frass had no effect on airway inflammation when administered systemically.</p> <p>Conclusions</p> <p>We showed for the first time that allergen-derived proteases in GC frass elicit allergic airway inflammation via PAR-2, but only when allergen was administered through the mucosa. Importantly, our data suggest the importance of resident airway cells in the initiation of allergic airway disease, and could make allergen-derived proteases attractive therapeutic targets.</p

    Candida soluble cell wall β-glucan facilitates ovalbumin-induced allergic airway inflammation in mice: Possible role of antigen-presenting cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although fungi have been implicated as initiating/deteriorating factors for allergic asthma, their contributing components have not been fully elucidated. We previously isolated soluble β-glucan from <it>Candida albicans </it>(CSBG) (Ohno et al., 2007). In the present study, the effects of CSBG exposure on airway immunopathology in the presence or absence of other immunogenic allergen was investigated <it>in vivo</it>, and their cellular mechanisms were analyzed both <it>in vivo </it>and <it>in vitro</it>.</p> <p>Methods</p> <p><it>In vivo</it>, ICR mice were divided into 4 experimental groups: vehicle, CSBG (25 μg/animal), ovalbumin (OVA: 2 μg/animal), and CSBG + OVA were repeatedly administered intratracheally. The bronchoalveolar lavage cellular profile, lung histology, levels of cytokines and chemokines in the lung homogenates, the expression pattern of antigen-presenting cell (APC)-related molecules in the lung digests, and serum immunoglobulin values were studied. <it>In vitro</it>, the impacts of CSBG (0–12.5 μg/ml) on the phenotype and function of immune cells such as splenocytes and bone marrow-derived dendritic cells (BMDCs) were evaluated in terms of cell proliferation, the surface expression of APC-related molecules, and OVA-mediated T-cell proliferating activity.</p> <p>Results</p> <p><it>In vivo</it>, repeated pulmonary exposure to CSBG induced neutrophilic airway inflammation in the absence of OVA, and markedly exacerbated OVA-related eosinophilic airway inflammation with mucus metaplasia in mice, which was concomitant with the amplified lung expression of Th2 cytokines and IL-17A and chemokines related to allergic response. Exposure to CSBG plus OVA increased the number of cells bearing MHC class II with or without CD80 in the lung compared to that of others. <it>In vitro</it>, CSBG significantly augmented splenocyte proliferation in the presence or absence of OVA. Further, CSBG increased the expression of APC-related molecules such as CD80, CD86, and DEC205 on BMDCs and amplified OVA-mediated T-cell proliferation through BMDCs.</p> <p>Conclusion</p> <p>CSBG potentiates allergic airway inflammation with maladaptive Th immunity, and this potentiation was associated with the enhanced activation of APCs including DC.</p

    The ‘microflora hypothesis’ of allergic diseases

    Full text link
    Increasingly, epidemiologic and clinical data support the hypothesis that perturbations in the gastrointestinal (GI) microbiota because of antibiotic use and dietary differences in ‘industrialized’ countries have disrupted the normal microbiota-mediated mechanisms of immunological tolerance in the mucosa, leading to an increase in the incidence of allergic airway disease. The data supporting this ‘microflora hypothesis’ includes correlations between allergic airway disease and (1) antibiotic use early in life, (2) altered fecal microbiota and (3) dietary changes over the past two decades. Our laboratory has recently demonstrated that mice can develop allergic airway responses to allergens if their endogenous microbiota is altered at the time of first allergen exposure. These experimental and clinical observations are consistent with other studies demonstrating that the endogenous microbiota plays a significant role in shaping the development of the immune system. Data are beginning to accumulate that a ‘balanced’ microbiota plays a positive role in maintaining mucosal immunologic tolerance long after post-natal development. Other studies have demonstrated that even small volumes delivered to the nasopharynx largely end up in the GI tract, suggesting that airway tolerance and oral tolerance may operate simultaneously. The mechanism of microbiota modulation of host immunity is not known; however, host and microbial oxylipins are one potential set of immunomodulatory molecules that may control mucosal tolerance. The cumulative data are beginning to support the notion that probiotic and prebiotic strategies be considered for patients coming off of antibiotic therapy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73451/1/j.1365-2222.2005.02379.x.pd
    corecore