51 research outputs found

    Chemical evolution of primary and secondary biomass burning aerosols during daytime and nighttime

    Get PDF
    Primary emissions from wood and pellet stoves were aged in an atmospheric simulation chamber under daytime and nighttime conditions. The aerosol was analyzed with the online Aerosol Mass Spectrometer (AMS) and offline Fourier transform infrared spectroscopy (FTIR). Measurements using the two techniques agreed reasonably well in terms of the organic aerosol (OA) mass concentration, OA:OC trends, and concentrations of biomass burning markers – lignin-like compounds and anhydrosugars. Based on the AMS, around 15 % of the primary organic aerosol (POA) mass underwent some form of transformation during daytime oxidation conditions after 6–10 hours of atmospheric exposure. A lesser extent of transformation was observed during the nighttime oxidation. The decay of certain semi-volatile (e.g., levoglucosan) and less volatile (e.g., lignin-like) POA components was substantial during aging, highlighting the role of heterogeneous reactions and gas-particle partitioning. Lignin-like compounds were observed to degrade under both daytime and nighttime conditions, whereas anhydrosugars degraded only under daytime conditions. Among the marker mass fragments of primary biomass burning OA (bbPOA), heavy ones (higher m/z) were relatively more stable during aging. The biomass burning secondary OA (bbSOA) became more oxidized with continued aging and resembled those of aged atmospheric organic aerosols. The bbSOA formed during daytime oxidation was dominated by acids. Organonitrates were an important product of nighttime reactions in both humid and dry conditions. Our results underline the importance of changes to both the primary and secondary biomass burning aerosols during their atmospheric aging. Heavier AMS fragments seldomly used in atmospheric chemistry can be used as more stable tracers of bbPOA and in combination with the established levoglucosan marker, can provide an indication of the extent of bbPOA aging

    Sources of water-soluble Brown Carbon at a South-Eastern European Site

    Get PDF
    Atmospheric brown carbon (BrC) is a highly uncertain, but potentially important contributor to light absorption in the atmosphere. Laboratory and field studies have shown that BrC can be produced from multiple sources, including primary emissions from fossil fuel combustion and biomass burning (BB), as well as secondary formation through a number of reaction pathways. It is currently thought that the dominant source of atmospheric BrC is primary emissions from BB, but relatively few studies demonstrate this in environments with complex source profiles. A field campaign was conducted during a month-long wintertime period in 2020 on the campus of the University of Peloponnese in the southwest of Patras, Greece which represents an urban site. During this time, ambient filter samples (a total of 35 filters) were collected from which the water-soluble BrC was determined using a semi-automated system similar to Hecobian et al. (2010), where absorption was measured over a 1 m path length. To measure the BrC, a UV-Vis Spectrophotometer was coupled to a Liquid Waveguide Capillary Cell and the light absorption intensity was recorded at 365 and 700 nm. The latter was used as a reference wavelength. We found that the average BrC absorption in Patras at a wavelength of 365 nm was 8.5 ± 3.9 Mm-1 suggesting that there was significant BrC in the organic aerosol during this period. Attribution of sources of BrC was done using simultaneous chemical composition data observations (primarily organic carbon, black carbon, and nitrate) combined with Positive Matrix Factorization analysis. This analysis showed that in addition to the important role of biomass burning (a contribution of about 20%) and other combustion emissions (also close to 20%), oxidized organic aerosol (approximately 40%) is also a significant contributor to BrC in the study area. Reference Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E.S., Weber, R.J., 2010. Water-soluble organic aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. Atmos. Chem. Phys. 10, 5965–5977. https://doi.org/10.5194/acp-10-5965-201

    Oxidative Potential of Atmospheric Particles at an Eastern Mediterranean Site

    Get PDF
    Aerosol oxidative potential (OP; the inherent ability of ambient particles to generate reactive oxygen species in vivo) may be linked to the health effects of population exposure to aerosol and is a metric of their toxicity. The goal of this work was to quantify the water-soluble OP of particles in an urban area in Patras, Greece and to investigate its links with source emissions or components of this particulate matter (PM). A field campaign was conducted during a monthlong wintertime period in 2020 (January 10 to February 13) on the campus of the University of Peloponnese in the southwest of Patras. During this time, ambient filter samples (a total of 35 filters) were collected. To measure the water-soluble OP we used a semiautomated system similar to Fang et al. (2015) based on the dithiothreitol (DTT) assay. The accuracy of our system was validated by measuring the DTT activity of 11 phenanthrequinone (PQN) solutions on both our system and the identical semi-automated validated system at the National Observatory of Athens (NOA). These two sets of analysed DTT activities (current vs. NOA system) were significantly correlated (R2=0.99) with a slope of 1.15 ± 0.04 and an intercept close to zero. We found that the average water-soluble OP in Patras was 1.5 ± 0.3 nmol min-1 m-3, ranging from 0.7 to 2 nmol min-1 m-3. The OP measured in Patras during the campaign is higher than reported values from similar wintertime studies in other urban areas such as Athens (Paraskevopoulou et al., 2019). The average watersoluble OP during a summer study for Patras was significantly lower and equal to 0.18 ± 0.02 nmol min-1 m- 3. Taking into account the average PM1 mass concentrations for these two periods (summer: 6 μg m-3 and winter: 23 μg m-3) it is clear that the increase in OP was two times the increase in PM mass making the wintertime aerosol more toxic. Additionally, the water-soluble brown carbon (BrC) was determined using an offline semi-automated system, where absorption was measured over a 1 m path length. The average BrC absorption in Patras at a wavelength of 365 nm was 8.6 ± 3.9 Mm-1 suggesting that there was significant BrC in the organic aerosol during this period. The coefficients of determination, R2, in Table 1 are used as a metric of the potential relationships between the various carbonaceous aerosol components and the DTT activity. The results suggest that the OP is not dominated by a single source or component, but that there are multiple components contributing to it during the study period. Interestingly, the highest correlation coefficient (R2 = 0.46) was found between the OP and Brown Carbon. This is consistent with recently published results for an urban site in Atlanta where the oxidative potential measured with the DTT method also had stronger correlations with BrC during the winter (Gao et al., 2020)

    A portable dual-smog-chamber system for atmospheric aerosol field studies

    Get PDF
    Smog chamber experiments using ambient air as a starting point can improve our understanding of the evolution of atmospheric particulate matter at timescales longer than those achieved by traditional laboratory experiments. These types of studies can take place under more realistic environmental conditions addressing the interactions among multiple pollutants. The use of two identical smog chambers, with the first serving as the baseline chamber and the second as the perturbation chamber (in which addition or removal of pollutants, addition of oxidants, change in the relative humidity, etc.), can facilitate the interpretation of the results in such inherently complex experiments. The differences of the measurements in the two chambers can be used as the basis for the analysis of the corresponding chemical or physical processes of ambient air. A portable dual-smog-chamber system was developed using two identical pillow-shaped smog chambers (1.5&thinsp;m3 each). The two chambers are surrounded by UV lamps in a hexagonal arrangement yielding a total JNO2 of 0.1&thinsp;min−1. The system can be easily disassembled and transported, enabling the study of various atmospheric environments. Moreover, it can be used with natural sunlight. The results of test experiments using ambient air as the starting point are discussed as examples of applications of this system.</p

    Properties and Atmospheric Oxidation of Norpinic Acid Aerosol

    No full text
    Norpinic acid is a major semi-volatile oxidation product of &alpha;-pinene and &beta;-pinene, two of the most important biogenic atmospheric volatile organic compounds. In this study we characterized the physicochemical properties of norpinic acid aerosol using a variety of techniques, and we investigated its reaction with OH radicals. The Aerosol Mass Spectrometer (AMS) spectrum of norpinic acid was characterized by a pronounced peak at m/z 82 (C5H6O+), which can be used as its chemical signature. The measured density of norpinic acid particles was 1.3 g cm&minus;3. Its saturation concentration at 298 K was estimated to be equal to 8.9 &mu;g m&minus;3 using thermodenuder measurements and 12.8 &mu;g m&minus;3 using isothermal dilution. Its vaporization enthalpy was equal to 71 kJ mol&minus;1. After reaction with OH radicals for an equivalent atmospheric period of 0.6&ndash;5 days under UV radiation and low RH, there were no noticeable changes in the AMS spectrum of the particles, while the wall-loss corrected mass concentration slightly decreased. This suggests that the atmospheric aging products of norpinic acid particles are quite similar to the parent molecule when measured by the AMS, and the aging reactions lead to a small change in particle mass concentration

    Gas and Particulate Pollution in Patras (Greece) during PANACEA 2019 – 2020

    No full text
    Extensive aerosol measurements were conducted in Patras (Greece) within the framework of the PANACEA summer and winter campaigns in Greece. During both periods a high-resolution time-of-flight aerosol mass spectrometer coupled with a variety of other instruments were deployed for measuring the chemical composition and concentration of fine particulate matter. The data are complemented with carbon monoxide, ozone, sulfur dioxide, and nitrogen oxides measurements. Volatile organic compounds concentrations were measured by a proton transfer-reaction mass spectrometer during part of the winter campaign. PM2.5 measurements from a network of fifteen low-cost sensors are also available. The aim of the campaigns was to enhance our knowledge of particulate air pollution and the resulting human exposure in major Greek cities. During the summer, positive matrix factorization showed that 90% of the OA was secondary and quite oxidized, while in winter biomass burning for residential heating was the dominant source of particulate matter

    Characterization and dark oxidation of the emissions of a pellet stove

    No full text
    Pellet combustion in residential heating stoves has increased globally during the last decade. Despite their high combustion efficiency, the widespread use of pellet stoves is expected to adversely impact air quality. The atmospheric aging of pellet emissions has received even less attention, focusing mainly on daytime conditions, while the degree to which pellet emissions undergo night-time aging as well as the role of relative humidity remain poorly understood. In this study, environmental simulation chamber experiments were performed to characterize the fresh and aged organic aerosol (OA) emitted by a pellet stove. The fresh pellet stove PM1 (particulate matter with aerodynamic diameter less than 1 µm) emissions consisted mainly of OA (93 ± 4 %), and black carbon (5 ± 3 %). The primary OA (POA) oxygen-to-carbon ratio (O:C) was 0.58 ± 0.04, higher than fresh logwood emissions. The emitted OA at a concentration of 70 μg m-3 mainly consisted of semi-volatile (68%) and intermediate-volatility (16%) compounds. The oxidation of the pellet emissions under dark conditions was investigated by injecting nitrogen dioxide (NO2) and ozone (O3) in the chamber, at different (10-80%) relative humidity (RH) levels. In all dark aging experiments secondary organic aerosol (SOA) formation was observed, increasing the OA levels after a few hours of exposure to NO3 radicals. The change in the aerosol composition and the extent of oxidation depended on RH. For low RH, the SOA formed was up to 30% of the initial OA, accompanied by a moderate change in both O:C levels (7−8 % increase) and OA spectrum. Aging under higher RH conditions (60−80%) led to a more oxygenated aerosol (increase in O:C of 11−18 %), but only a minor (1−10%) increase in OA mass. The increase in O:C at high RH, indicates the importance of heterogeneous aqueous reactions in this system, that oxidize the original OA with a relatively small net change of the OA mass. These results show that the OA in pellet emissions can chemically evolve under low photochemical activity (e.g. wintertime period) with important enhancement in SOA mass under certain conditions

    Nighttime chemistry of biomass burning emissions in urban areas: A dual mobile chamber study

    No full text
    International audienceResidential biomass burning for heating purposes is an important source of air pollutants during winter. Here we test the hypothesis that significant secondary organic aerosol production can take place even during winter nights through oxidation of the emitted organic vapors by the nitrate (NO3) radical produced during the reaction of ozone and nitrogen oxides. We use a mobile dual smog chamber system which allows the study of chemical aging of ambient air against a control reference. Ambient urban air sampled during a wintertime campaign during nighttime periods with high concentrations of biomass burning emissions was used as the starting point for the aging experiments. Biomass burning organic aerosol (OA) was, on average, 70 % of the total OA at the beginning of our experiments. Ozone was added in the perturbed chamber to simulate mixing with background air (and subsequent NO3 radical production and aging), while the second chamber was used as a reference. Following the injection of ozone, rapid OA formation was observed in all experiments, leading to increases in the OA concentration by 20 %-70 %. The oxygen-to-carbon ratio of the OA increased on average by 50 %, and the mass spectra of the produced OA was quite similar to the oxidized OA mass spectra reported during winter in urban areas. Furthermore, good correlation was found for the OA mass spectra between the ambient-derived emissions in this study and the nocturnal aged laboratory-derived biomass burning emissions from previous work. Concentrations of NO3 radicals as high as 25 ppt (parts per trillion) were measured in the perturbed chamber, with an accompanying production of 0.1-3.2 µg m−3 of organic nitrate in the aerosol phase. Organic nitrate represented approximately 10 % of the mass of the secondary OA formed. These results strongly indicate that the OA in biomass burning plumes can chemically evolve rapidly even during wintertime periods with low photochemical activity

    Secondary aerosol formation during the dark oxidation of residential biomass burning emissions

    No full text
    Particulate matter from biomass burning emissions affects air quality, ecosystems and climate; however, quantifying these effects requires that the connection between primary emissions and secondary aerosol production is firmly established. We performed atmospheric simulation chamber experiments on the chemical oxidation of residential biomass burning emissions under dark conditions. Biomass burning organic aerosol was found to age under dark conditions, with its oxygen-to-carbon ratio increasing by 7-34% and producing 1-38 mu g m(-3) of secondary organic aerosol (5-80% increase over the fresh organic aerosol) after 30 min of exposure to NO3 radicals in the chamber (corresponding to 1-3 h of exposure to typical nighttime NO3 radical concentrations in an urban environment). The average mass concentration of SOA formed under dark-oxidation conditions was comparable to the mass concentration formed after 3 h (equivalent to 7-10 h of ambient exposure) under ultraviolet lights (6 mu g m(-3) or a 47% increase over the emitted organic aerosol concentration). The dark-aging experiments showed a substantial increase in secondary nitrate aerosol (0.12-3.8 mu g m(-3)), 46-100% of which is in the form of organic nitrates. The biomass burning aerosol pH remained practically constant at 2.8 throughout the experiment. This value promotes inorganic nitrate partitioning to the particulate phase, potentially contributing to the buildup of nitrate aerosol in the boundary layer and enhancing long-range transport. These results suggest that oxidation through reactions with the NO3 radical is an additional secondary aerosol formation pathway in biomass burning emission plumes that should be accounted for in atmospheric chemical-transport models.LAP
    • …
    corecore