29,141 research outputs found

    Observations of Large Scale Sidereal Anisotropy in 1 and 11 TeV cosmic rays from the MINOS experiment

    Full text link
    The MINOS Near and Far Detectors are two large, functionally-identical, steel-scintillating sampling calorimeters located at depths of 220 mwe and 2100 mwe respectively. The detectors observe the muon component of hadronic showers produced from cosmic ray interactions with nuclei in the earth's atmosphere. From the arrival direction of these muons, the anisotropy in arrival direction of the cosmic ray primaries can be determined. The MINOS Near and Far Detector have observed anisotropy on the order of 0.1% at 1 and 11 TeV respectively. The amplitude and phase of the first harmonic at 1 TeV are 8.2±\pm1.7(stat.)×104\times 10^{-4} and (8.9±\pm12.1(stat.))^{\circ}, and at 11 TeV are 3.8±\pm0.5(stat.)×104\times 10^{-4} and (27.2±\pm7.2(stat.))^{\circ}.Comment: 32nd International Cosmic Ray Conference, August 201

    The influence of negative-energy states on proton-proton bremsstrahlung

    Get PDF
    We investigate the effect of negative-energy states on proton-proton bremsstrahlung using a manifestly covariant amplitude based on a T-matrix constructed in a spectator model. We show that there is a large cancellation among the zeroth-order, single- and double-scattering diagrams involving negative-energy nucleonic currents. We thus conclude that it is essential to include all these diagrams when studying effects of negative-energy states.Comment: 12 pages revtex and 3 figure

    Responding to rape.

    Get PDF

    Language-based multimedia information retrieval

    Get PDF
    This paper describes various methods and approaches for language-based multimedia information retrieval, which have been developed in the projects POP-EYE and OLIVE and which will be developed further in the MUMIS project. All of these project aim at supporting automated indexing of video material by use of human language technologies. Thus, in contrast to image or sound-based retrieval methods, where both the query language and the indexing methods build on non-linguistic data, these methods attempt to exploit advanced text retrieval technologies for the retrieval of non-textual material. While POP-EYE was building on subtitles or captions as the prime language key for disclosing video fragments, OLIVE is making use of speech recognition to automatically derive transcriptions of the sound tracks, generating time-coded linguistic elements which then serve as the basis for text-based retrieval functionality

    Rapidity Gap Events for Squark Pair Production at the LHC

    Full text link
    The exchange of electroweak gauginos in the tt- or uu-channel allows squark pair production at hadron colliders without color exchange between the squarks. This can give rise to events where little or no energy is deposited in the detector between the squark decay products. We discuss the potential for detection of such rapidity gap events at the Large Hadron Collider (LHC). We present an analysis with full event simulation using PYTHIA as well as Herwig++, but without detector simulation. We analyze the transverse energy deposited between the jets from squark decay, as well as the probability of finding a third jet in between the two hardest jets. For the mSUGRA benchmark point SPS1a we find statistically significant evidence for a color singlet exchange contribution.Comment: 4 pages, 2 figures. To be published in the proceedings of SUSY09, Northeastern University, Boston, M

    Solving Dynamic Discrete Choice Models Using Smoothing and Sieve Methods

    Get PDF
    We propose to combine smoothing, simulations and sieve approximations to solve for either the integrated or expected value function in a general class of dynamic discrete choice (DDC) models. We use importance sampling to approximate the Bellman operators defining the two functions. The random Bellman operators, and therefore also the corresponding solutions, are generally non-smooth which is undesirable. To circumvent this issue, we introduce a smoothed version of the random Bellman operator and solve for the corresponding smoothed value function using sieve methods. We show that one can avoid using sieves by generalizing and adapting the `self-approximating' method of Rust (1997) to our setting. We provide an asymptotic theory for the approximate solutions and show that they converge with root-N-rate, where NN is number of Monte Carlo draws, towards Gaussian processes. We examine their performance in practice through a set of numerical experiments and find that both methods perform well with the sieve method being particularly attractive in terms of computational speed and accuracy

    Josephson-vortex-flow terahertz emission in layered high-TcT_c superconducting single crystals

    Full text link
    We report on the successful terahertz emission (0.6\sim1 THz) that is continuous and tunable in its frequency and power, by driving Josephson vortices in resonance with the collective standing Josephson plasma modes excited in stacked Bi2_2Sr2_2CaCu2_2O8+x_{8+x} intrinsic Josephson junctions. Shapiro-step detection was employed to confirm the terahertz-wave emission. Our results provide a strong feasibility of developing long-sought solid-state terahertz-wave emission devices
    corecore