59 research outputs found

    Multipurpose silicon photonics signal processor core

    Full text link
    [EN] Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.J.C. acknowledges funding from the ERC Advanced Grant ERC-ADG-2016-741415 UMWP-Chip, I.G. acknowledges the funding through the Spanish MINECO Ramon y Cajal program. D.P. acknowledges financial support from the UPV through the FPI predoctoral funding scheme. D.J.T. acknowledges funding from the Royal Society for his University Research Fellowship.Pérez-López, D.; Gasulla Mestre, I.; Crudgington, L.; Thomson, DJ.; Khokhar, AZ.; Li, K.; Cao, W.... (2017). Multipurpose silicon photonics signal processor core. Nature Communications. 8(1925):1-9. https://doi.org/10.1038/s41467-017-00714-1S1981925Doerr, C. R. & Okamoto, K. Advances in silica planar lightwave circuits. J. Lightw. Technol. 24, 4763–4789 (2006).Coldren, L. A. et al. High performance InP-based photonic ICs—A tutorial. J. Lightw. Technol 29, 554–570 (2011).Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).Bogaerts, W. Design challenges in silicon photonics. IEEE J. Sel. Top. Quantum Electron. 20, 8202008 (2014).Bogaerts, W. et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightw. Technol. 23, 401–412 (2005).Smit, M. K. et al. An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 29, 083001 (2014).Leinse, A. et al. TriPleX waveguide platform: low-loss technology over a wide wavelength range. Proc. SPIE 8767, 87670E (2013).Kish, F. et al. From visible light-emitting diodes to large-scale III–V photonic integrated circuits. Proc. IEEE 101, 2255–2270 (2013).Heck, M. J. R. et al. Hybrid silicon photonic integrated circuit technology. IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).Sacher, W. et al. Multilayer silicon nitride-on-silicon integrated photonic platforms and devices. J. Lightw. Technol. 33, 901–910 (2015).Asghari, M. Silicon photonics: A low cost integration platform for datacom and telecom applications. In OFC/NFOEC 2008 – 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference 1–10 (San Diego, USA, 2008).Melati, D. et al. Integrated all-optical MIMO demultiplexer for mode- and wavelength-division-multiplexed transmission. Opt. Lett. 42, 342–345 (2017).Waterhouse, R. & Novak, D. Realizing 5G: microwave photonics for 5G mobile wireless systems. IEEE Microw. Mag. 16, 84–92 (2015).Marpaung, D. et al. Integrated microwave photonics. Laser Photon. Rev. 7, 506–538 (2013).Iezekiel, S., Burla, M., Klamkin, J., Marpaung, D. & Capmany, J. RF engineering meets optoelectronics: Progress in integrated microwave photonics. IEEE Microw. Mag. 16, 28–45 (2015).Technology focus on microwave photonics. Nat. Photon. 5, 723 (2011).Ghelfi, P. et al. A fully photonics-based coherent radar system. Nature 507, 341–345 (2014).Heideman, R. G. TriPleX™-based integrated optical ring resonators for lab-ona-chip-and environmental detection. IEEE J. Sel. Top. Quantum Electron. 18, 1583–1596 (2012).Estevez, M. C., Alvarez, M. & Lechuga, L. Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photon. Rev. 6, 463–487 (2012).Almeida, V. R., Barrios, C. A., Panepucci, R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004).Norberg, E. J., Guzzon, R. S., Parker, J. S., Johansson, L. A. & Coldren, L. A. Programmable photonic microwave filters monolithically integrated in InP/InGaAsP. J. Lightw. Technol. 29, 1611–1619 (2011).Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015).Hill, M. T. et al. A fast low power optical memory based on coupled micro-ring lasers. Nature 432, 206–209 (2004).Slavík, R. et al. Photonic temporal integrator for all-optical computing. Opt. Express 16, 18202–18214 (2008).Sun, C. et al. A monolithically-integrated chip-to-chip optical link in bulk CMOS. IEEE J. Solid-State Circ. 50, 828–844 (2015).Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).Assefa, S. et al. in Optical Fibre Communication Conference OMM6, https://www.osapublishing.org/abstract.cfm?uri=OFC-2011-OMM6 (Optical Society of America, 2011).Peruzzo, A. et al. Multimode quantum interference of photons in multiport integrated devices. Nat. Commun. 2, 224 (2011).Bonneau, D. et al. Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. N. J. Phys. 14, 045003 (2012).Metcalf, B. J. et al. Multiphoton quantum interference in a multiport integrated photonic device. Nat. Commun. 4, 1356 (2013).Muñoz, P. et al. in 16th International Conference on Transparent Optical Networks (ICTON), 1–4 (Graz, 2014).Ribeiro, A. et al. Demonstration of a 4×4-port universal linear circuit. Optica 3, 1348–1357 (2016).Liu, W. et al. A fully reconfigurable photonic integrated signal processor. Nat. Photon 10, 190–195 (2016).Graydon, O. Birth of the programmable optical chip. Nat. Photon 10, 1 (2016).Pérez, D., Gasulla, I. & Capmany, J. Software-defined reconfigurable microwave photonics processor. Opt. Express 23, 14640–14654 (2015).Miller, D. A. B. Self-configuring universal linear optical component. Photon. Res. 1, 1–15 (2013).Miller, D. A. B. Self-aligning universal beam coupler. Opt. Express 21, 6360–6370 (2013).Clements, W. R. et al. Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016).Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).Capmany, J., Gasulla, I. & Pérez, D. Microwave photonics: The programmable processor. Nat. Photon. 10, 6–8 (2016).Pérez, D., Gasulla., Capmany, J. & Soref, R. A. Reconfigurable lattice mesh designs for programmable photonic processors. Opt. Express 24, 12093–12106 (2016).Madsen, C. K. & Zhao, J. H. Optical Filter Design and Analysis: A Signal Processing Approach. 1st edn. (Wiley, 1999).Jinguji, K. Synthesis of coherent two-port lattice-form optical delay-line circuit. J. Lightw. Technol. 13, 73–82 (1995).Jinguji, K. Synthesis of coherent two-port Optical delay-line circuit with ring waveguides. J. Lightw. Technol. 14, 1882–1898 (1996).Madsen, C. K. General IIR optical filter design for WDM applications using all-pass filters. J. Lightw. Technol. 18, 860–868 (2000).Burla, M. et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19, 21475–21484 (2011).Yariv, A. et al. Coupled resonator optical waveguides: a proposal and analysis. Opt. Lett. 24, 711–713 (1999).Hebner, J. E. et al. Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. J. Opt. Soc. Am. B. 21, 1665–1673 (2004).Fandiño, J. S. et al. A monolithic integrated photonic microwave filter. Nat. Photon. 11, 124–129 (2017).Miller, D. A. B. All linear optical devices are mode converters. Opt. Express 20, 23985–23993 (2012).Reck, M. et al. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).Carolan, J. et al. Universal linear optics. Science 349, 711 (2015).Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information. 1st edn. (Cambridge University Press, 2001).Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015).Grillanda, S. et al. Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica 1, 129–136 (2014)

    A monolithic integrated photonic microwave filter

    Full text link
    [EN] Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.The authors acknowledge financial support from the Spanish Centro para el Desarrollo Tecnologico Industrial (CDTI) through the NEOTEC start-up programme, the European Commission through the 7th Research Framework Programme project, Photonic Advanced Research and Development for Integrated Generic Manufacturing (FP7-PARADIGM), the Generalitat Valenciana through the Programa para grupos de Investigacion de Excelencia (PROMETEO) project code 2013/012, the Spanish Ministerio de Economia y Comercio (MINECO) via project TEC2013-42332-P, PIF4ESP, and the Unwersitat Politecnica de Valencia (UPVOV) through projects 10-3E-492 and 08-3E-008 funded by the Fondos Europeos de Desarrollo Regional (FEDER). J.S. Fandino acknowledges financial support from Formacion de Profesorado Universitario (FPU) grant AP2010-1595.Sanchez Fandiño, JA.; Muñoz Muñoz, P.; Doménech Gómez, JD.; Capmany Francoy, J. (2017). A monolithic integrated photonic microwave filter. Nature Photonics. 11(2):124-129. https://doi.org/10.1038/NPHOTON.2016.233S124129112Novak, D. et al. Radio-over-fiber technologies for emerging wireless systems. IEEE J. Quantum Electron. 52, 1–11 (2016).Waterhouse, R. & Novak, D. Realizing 5G: microwave photonics for 5G mobile wireless systems. IEEE Microw. Mag. 16, 84–92 (2015).Won, R. Microwave photonics shines. Nat. Photon. 5, 736 (2011).Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007).Yao, J. Microwave photonics. J. Lightw. Technol. 27, 314–335 (2009).Andrews, J. G. et al. What will 5G be? IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014).Gosh, A., et al. Millimetre-wave enhanced local area systems: a high-data-rate approach for future wireless networks. IEEE J. Sel. Areas Commun. 32, 1152–1163 (2014).Marpaung, D. et al. Integrated microwave photonics. Laser Photon. Rev. 7, 506–538 (2013).Iezekiel, S., Burla, M., Klamkin, J., Marpaung, D. & Capmany, J. RF engineering meets optoelectronics: progress in integrated microwave photonics. IEEE Microw. Mag. 16, 28–45 (2015).Mitchell, J. E. Integrated wireless backhaul over optical access networks. J. Lightw. Technol. 32, 3373–3382 (2014).Liu, C., Wang, J., Cheng, L., Zhu, M. & Chang, G.-K. Key microwave-photonics technologies for next-generation cloud-based radio access networks. J. Lightw. Technol. 32, 3452–3460 (2014).Norberg, E. J., Guzzon, R. S., Parker, J. S., Johansson, L. A. & Coldren, L. A. Programmable photonic microwave filters monolithically integrated in InP/InGaAsP. J. Lightw. Technol. 29, 1611–1619 (2011).Guzzon, R., Norberg, E., Parker, J., Johansson, L. & Coldren, L. Integrated InP–InGaAsP tuneable coupled ring optical bandpass filters with zero insertion loss. Opt. Express 19, 7816–7826 (2011).Fandiño, J. S. & Muñoz, P. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach–Zehnder interferometer filter. Opt. Lett. 38, 4316–4319 (2013).Burla, M. et al. On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide Bragg grating. In IEEE International Topical Meeting on Microwave Photonics 92–95 (IEEE, 2013).Shi, W., Veerasubramanian, V., Patel, D. & Plant, D. Tuneable nanophotonic delay lines using linearly chirped contradirectioinal couplers with uniform Bragg gratings. Opt. Lett. 39, 701–703 (2014).Guan, B. et al. CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing. IEEE J. Sel. Top. Quantum Electron. 20, 359–368 (2014).Khan, M. H. et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photon. 4, 117–122 (2010).Pagani, M. et al. Instantaneous frequency measurement system using four-wave mixing in an ultra-compact long silicon waveguide. In Proc. 41st European Conf. on Optical Communication (ECOC) 1–3 (IEEE, 2015).Khilo, A. et al. Photonic ADC: overcoming the bottleneck of electronic jitter. Opt. Express 20, 4454–4469 (2012).Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015).Marpaung, D. et al. Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection. Opt. Express 21, 23286–23294 (2013).Zhuang, L. et al. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links. Opt. Express 21, 25999–26013 (2013).Marpaung, D., Chevalier, L., Burla, M. & Roeloffzen, C. Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator. Opt. Express 19, 24838–24848 (2011).Marpaung, D. On-chip photonic-assisted instantaneous microwave frequency measurement system. IEEE Photon. Technol. Lett. 25, 837–840 (2013).Burla, M. et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19, 21475–21484 (2011).Tan, K. et al. Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide. Opt. Express 21, 2003–2011 (2013).Pagani, M. et al. Tuneable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering. Opt. Express 22, 28810–28818 (2014).Pérez, D., Gasulla, I. & Capmany, J. Software-defined reconfigurable microwave photonics processor. Opt. Express 23, 14640–14654 (2015).Capmany, J., Gasulla, I. & Pérez, D. Microwave photonics: the programmable processor. Nat. Photon. 10, 6–8 (2016).Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).Roeloffzen, C. G. et al. Silicon nitride microwave photonic circuits. Opt. Express 21, 22937–22961 (2013).Liu, W. et al. A fully reconfigurable photonic integrated signal processor. Nat. Photon. 10, 190–195 (2016).Madsen, C. K. & Zhao, J. H. Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).Román, J., Frankel, M. Y. & Esman, R. D. Spectral characterization of fiber gratings with high resolution. Opt. Lett. 23, 939–941 (1998).Hernández, R., Loayssa, A. & Benito, D. Optical vector network analysis based on single-sideband modulation. Opt. Eng. 43, 2418–2421 (2004).Jinguji, K. & Oguma, M. Optical half-band filters. J. Lightw. Technol. 18, 252–259 (2000).Madsen, C. K. Efficient architectures for exactly realizing optical filters with optimum bandpass designs. IEEE Photon. Technol. Lett. 10, 1136–1138 (1998).Madsen, C. K. General IIR optical filter design for WDM applications using all-pass filters. J. Lightw. Technol. 18, 860–868 (2000).Smit, M. K. et al. An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 29, 083001 (2014).Besse, P. A., Gini, E., Bachmann, M. & Melchior, H. New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios. J. Lightw. Technol. 14, 2286–2293 (1996).Pérez, D. et al. Figures of merit for self-beating filtered microwave photonic systems. Opt. Express 24, 10087–10102 (2016).Zhuang, L. et al. Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors. Laser Photon. Rev. 7, 994–1002 (2013)
    • …
    corecore