11,200 research outputs found

    The pio Operon Is Essential for Phototrophic Fe(II) Oxidation in Rhodopseudomonas palustris TIE-1

    Get PDF
    Phototrophic Fe(II)-oxidizing bacteria couple the oxidation of ferrous iron [Fe(II)] to reductive CO2 fixation by using light energy, but until recently, little has been understood about the molecular basis for this process. Here we report the discovery, with Rhodopseudomonas palustris TIE-1 as a model organism, of a three-gene operon, designated the pio operon (for phototrophic iron oxidation), that is necessary for phototrophic Fe(II) oxidation. The first gene in the operon, pioA, encodes a c-type cytochrome that is upregulated under Fe(II)-grown conditions. PioA contains a signal sequence and shares homology with MtrA, a decaheme c-type cytochrome from Shewanella oneidensis MR-1. The second gene, pioB, encodes a putative outer membrane beta-barrel protein. PioB is a homologue of MtrB from S. oneidensis MR-1. The third gene, pioC, encodes a putative high potential iron sulfur protein (HiPIP) with a twin-arginine translocation (Tat) signal sequence and is similar to the putative Fe(II) oxidoreductase (Iro) from Acidithiobacillus ferrooxidans. Like PioA, PioB and PioC appear to be secreted proteins. Deletion of the pio operon results in loss of Fe(II) oxidation activity and growth on Fe(II). Complementation studies confirm that the phenotype of this mutant is due to loss of the pio genes. Deletion of pioA alone results in loss of almost all Fe(II) oxidation activity; however, deletion of either pioB or pioC alone results in only partial loss of Fe(II) oxidation activity. Together, these results suggest that proteins encoded by the pio operon are essential and specific for phototrophic Fe(II) oxidation in R. palustris TIE-1

    The fox Operon from Rhodobacter Strain SW2 Promotes Phototrophic Fe(II) Oxidation in Rhodobacter capsulatus SB1003

    Get PDF
    Anoxygenic photosynthesis based on Fe(II) is thought to be one of the most ancient forms of metabolism and is hypothesized to represent a transition step in the evolution of oxygenic photosynthesis. However, little is known about the molecular basis of this process because, until recently (Y. Jiao and D. K. Newman, J. Bacteriol. 189:1765-1773, 2007), most phototrophic Fe(II)-oxidizing bacteria have been genetically intractable. In this study, we circumvented this problem by taking a heterologous-complementation approach to identify a three-gene operon (the foxEYZ operon) from Rhodobacter sp. strain SW2 that confers enhanced light-dependent Fe(II) oxidation activity when expressed in its genetically tractable relative Rhodobacter capsulatus SB1003. The first gene in this operon, foxE, encodes a c-type cytochrome with no significant similarity to other known proteins. Expression of foxE alone confers significant light-dependent Fe(II) oxidation activity on SB1003, but maximal activity is achieved when foxE is expressed with the two downstream genes foxY and foxZ. In SW2, the foxE and foxY genes are cotranscribed in the presence of Fe(II) and/or hydrogen, with foxZ being transcribed only in the presence of Fe(II). Sequence analysis predicts that foxY encodes a protein containing the redox cofactor pyrroloquinoline quinone and that foxZ encodes a protein with a transport function. Future biochemical studies will permit the localization and function of the Fox proteins in SW2 to be determined

    Two-phase flow dynamics in the gas diffusion layer of proton exchange membrane fuel cells: Volume of fluid modeling and comparison with experiment

    Get PDF
    This paper proposes a three-dimensional (3D) volume of fluid (VOF) study to investigate two-phase flow in the gas diffusion layer (GDL) of proton exchange membrane (PEM) fuel cells and liquid water distribution. A stochastic model was adopted to reconstruct the 3D microstructures of Toray carbon papers and incorporate the experimentally-determined varying porosity. The VOF predictions were compared with the water profiles obtained by the X-ray tomographic microscopy (XTM) and the Leverett correlation. It was found local water profiles are similar in the sample’s sub-regions under the pressure difference p = 1000 Pa between the two GDL surfaces, but may vary significantly under p = 6000 Pa. The water-air interfaces inside the GDL structure were presented to show water distribution and breakthrough

    Numerical simulation of two-phase cross flow in the gas diffusion layer microstructure of proton exchange membrane fuel cells

    Get PDF
    The cross flow in the under-land gas diffusion layer (GDL) between 2 adjacent channels plays an important role on water transport in proton exchange membrane fuel cell. A 3-dimensional (3D) two-phase model that is based on volume of fluid is developed to study the liquid water-air cross flow within the GDL between 2 adjacent channels. By considering the detailed GDL microstructures, various types of air-water cross flows are investigated by 3D numerical simulation. Liquid water at 4 locations is studied, including droplets at the GDL surface and liquid at the GDL-catalyst layer interface. It is found that the water droplet at the higher-pressure channel corner is easier to be removed by cross flow compared with droplets at other locations. Large pressure difference Δp facilitates the faster water removal from the higher-pressure channel. The contact angle of the GDL fiber is the key parameter that determines the cross flow of the droplet in the higher-pressure channel. It is observed that the droplet in the higher-pressure channel is difficult to flow through the hydrophobic GDL. Numerical simulations are also performed to investigate the water emerging process from different pores of the GDL bottom. It is found that the amount of liquid water removed by cross flow mainly depends on the pore's location, and the water under the land is removed entirely into the lower-pressure channel by cross flow

    Deep levels and radiation effects in p-InP

    Get PDF
    A survey was conducted on past studies of hole traps in InP. An experiment was designed to evaluate hole traps in Zn-doped InP after fabrication, after electron irradiation and after annealing using deep level transient spectroscopy. Data similar to that of Yamaguchi was seen with observation of both radiation-induced hole and electron traps at E sub A=0.45 eV and 0.03 eV, respectively. Both traps are altered by annealing. It is also shown that trap parameters for surface-barrier devices are influenced by many factors such as bias voltage, which probes traps at different depths below the surface. These devices require great care in data evaluation

    Induction of specific tolerance by intrathymic injection of recipient muscle cells transfected with donor class I major histocompatibility complex.

    Get PDF
    Induction of tolerance to allogeneic MHC antigens has been a goal in the field of transplantation because it would reduce or eliminate the need for generalized immunosuppression. Although encouraging results have been obtained in experimental models by exposing recipient thymus to donor cells before transplantation, donor cells are not typically available at that time, and the donor antigens responsible for the effect are poorly defined. In the present study, thymic tolerance was demonstrated without using donor cells. Recipient thymus was injected before transplantation with autologous myoblasts and myotubes that were genetically modified to express allogeneic donor-type MHC class I antigen. Donor-specific unresponsiveness was induced to a completely MHC-disparate liver transplant and to a subsequent donor-type cardiac allograft, but not a third-party allograft. In vitro, recipient CTL demonstrated a 10-fold reduction in killing of donor cells, but not of third-party cells. Our results demonstrate: (1) that recipient muscle cells can be genetically engineered to induce donor-specific unresponsiveness when given intrathymically, and (2) transfected recipient cells expressing only donor MHC class I antigen can induce tolerance to a fully allogeneic donor
    corecore