238 research outputs found

    BREAKUP OF HADRON MASSES AND ENERGY-MOMENTUM TENSOR OF QCD

    Get PDF
    Hadron masses are shown to be separable in QCD into contributions of quark and gluon kinetic and potential energies, quark masses, and the trace anomaly. The separation is based on a study of the structure of the QCD energy-momentum tensor and its matrix elements in hadron states. The paper contains two parts. In the first part, a detailed discussion of the renormalization properties of the energy-momentum tensor is given. In the second part, a mass separation formula is derived and then applied to the nucleon, pion, and the QCD vacuum. Implications of the results on hadron structure and non-perturbative QCD dynamics are discussed.Comment: 21 pages, ReVTe

    The characterisation of microsatellite markers reveals tetraploidy in the Greater Water Parsnip, Sium latifolium (Apiaceae).

    Get PDF
    BACKGROUND: The Greater Water Parsnip, Sium latifolium (Apiaceae), is a marginal aquatic perennial currently endangered in England and consequently the focus of a number of conservation translocation projects. Microsatellite markers were developed for S. latifolium to facilitate comparison of genetic diversity and composition between natural and introduced populations. RESULTS: We selected 65 S. latifolium microsatellite (MiSeq) sequences and designed primer pairs for these. Primer sets were tested in 32 individuals. We found 15 polymorphic loci that amplified consistently. For the selected 15 loci, the number of alleles per locus ranged from 8 to 17. For all loci, S. latifolium individuals displayed up to four alleles indicating polyploidy in this species. CONCLUSIONS: These are the first microsatellite loci developed for S. latifolium and each individual displayed 1-4 alleles per locus, suggesting polyploidy in this species. These markers provide a valuable resource in evaluating the population genetic composition of this endangered species and thus will be useful for guiding conservation and future translocations of the species

    Comparison of IgG diffusion and extracellular matrix composition in rhabdomyosarcomas grown in mice versus in vitro as spheroids reveals the role of host stromal cells

    Get PDF
    The tumour extracellular matrix acts as a barrier to the delivery of therapeutic agents. To test the hypothesis that extracellular matrix composition governs the penetration rate of macromolecules in tumour tissue, we measured the diffusion coefficient of nonspecific IgG in three rhabdomyosarcoma subclones growing as multicellular spheroids in vitro or as subcutaneous tumours in dorsal windows in vivo. In subcutaneous tumours, the diffusion coefficient decreased with increasing content of collagen and sulphated glycosaminoglycans. When grown as multicellular spheroids, no differences in either extracellular matrix composition or diffusion coefficient were found. Comparison of in vitro vs in vivo results suggests an over-riding role of host stromal cells in extracellular matrix production subjected to modulation by tumour cells. Penetration of therapeutic macromolecules through tumour extracellular matrix might thus be largely determined by the host organ. Hence, caution must be exercised in extrapolating drug penetrability from spheroids and multilayer cellular sandwiches consisting of only tumour cells to tumours in vivo

    Protocol for Nearly Full-Length Sequencing of HIV-1 RNA from Plasma

    Get PDF
    Nearly full-length genome sequencing of HIV-1 using peripheral blood mononuclear cells (PBMC) DNA as a template for PCR is now a relatively routine laboratory procedure. However, this has not been the case when using virion RNA as the template and this has made full genome analysis of circulating viruses difficult. Therefore, a well-developed procedure for sequencing of full-length HIV-1 RNA directly from plasma was needed. Plasma from U.S. donors representing a range of viral loads (VL) was used to develop the assay. RNA was extracted from plasma and reverse-transcribed. Two or three overlapping regions were PCR amplified to cover the entire viral genome and sequenced for verification. The success of the procedure was sensitive to VL but was routinely successful for VL greater than 105 and the rate declined in proportion to the VL. While the two-amplicon strategy had an advantage of increasing the possibility of amplifying a single species of HIV-1, the three-amplicon strategy was more successful in amplifying samples with low viral loads. This protocol provides a useful tool for molecular analysis to understand the HIV epidemic and pathogenesis, as well as diagnosis, therapy and future vaccine strategies

    Dynamics of HIV-1 Quasispecies during Antiviral Treatment Dissected Using Ultra-Deep Pyrosequencing

    Get PDF
    Background: Ultra-deep pyrosequencing (UDPS) allows identification of rare HIV-1 variants and minority drug resistance mutations, which are not detectable by standard sequencing. Principal Findings: Here, UDPS was used to analyze the dynamics of HIV-1 genetic variation in reverse transcriptase (RT) (amino acids 180–220) in six individuals consecutively sampled before, during and after failing 3TC and AZT containing antiretroviral treatment. Optimized UDPS protocols and bioinformatic software were developed to generate, clean and analyze the data. The data cleaning strategy reduced the error rate of UDPS to an average of 0.05%, which is lower than previously reported. Consequently, the cut-off for detection of resistance mutations was very low. A median of 16,016 (range 2,406–35,401) sequence reads were obtained per sample, which allowed detection and quantification of minorit

    Haemophilus influenzae Infection Drives IL-17-Mediated Neutrophilic Allergic Airways Disease

    Get PDF
    A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR). Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark features of asthma in a mouse model of allergic airways disease (AAD). BALB/c mice were intraperitoneally sensitized to ovalbumin (OVA) and intranasally challenged with OVA 12–15 days later to induce AAD. Mice were infected with non-typeable H. influenzae during or 10 days after sensitization, and the effects of infection on the development of key features of AAD were assessed on day 16. T-helper 17 cells were enumerated by fluorescent-activated cell sorting and depleted with anti-IL-17 neutralizing antibody. We show that infection in AAD significantly reduced eosinophilic inflammation, OVA-induced IL-5, IL-13 and IFN-γ responses and AHR; however, infection increased airway neutrophil influx in response to OVA challenge. Augmented neutrophilic inflammation correlated with increased IL-17 responses and IL-17 expressing macrophages and neutrophils (early, innate) and T lymphocytes (late, adaptive) in the lung. Significantly, depletion of IL-17 completely abrogated infection-induced neutrophilic inflammation during AAD. In conclusion, H. influenzae infection synergizes with AAD to induce Th17 immune responses that drive the development of neutrophilic and suppress eosinophilic inflammation during AAD. This results in a phenotype that is similar to neutrophilic asthma. Infection-induced neutrophilic inflammation in AAD is mediated by IL-17 responses

    STAT3 Activation in Skeletal Muscle Links Muscle Wasting and the Acute Phase Response in Cancer Cachexia

    Get PDF
    Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26)-carcinoma cachexia.Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer.These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and translated in muscle such that amino acids liberated by increased proteolysis in cachexia are synthesized into acute phase proteins and exported into the blood

    Endoplasmic Reticulum Stress-Induced JNK Activation Is a Critical Event Leading to Mitochondria-Mediated Cell Death Caused by β-Lapachone Treatment

    Get PDF
    β-lapachone (β-lap) is a bioreductive agent that is activated by the two-electron reductase NAD(P)H quinone oxidoreductase 1 (NQO1). Although β-lap has been reported to induce apoptosis in various cancer types in an NQO1-dependent manner, the signaling pathways by which β-lap causes apoptosis are poorly understood.β-lap-induced apoptosis and related molecular signaling pathways in NQO1-negative and NQO1-overexpressing MDA-MB-231 cells were investigated. Pharmacological inhibitors or siRNAs against factors involved in β-lap-induced apoptosis were used to clarify the roles played by such factors in β-lap-activated apoptotic signaling pathways. β-lap leads to clonogenic cell death and apoptosis in an NQO1- dependent manner. Treatment of NQO1-overexpressing MDA-MB-231 cells with β-lap causes rapid disruption of mitochondrial membrane potential, nuclear translocation of AIF and Endo G from mitochondria, and subsequent caspase-independent apoptotic cell death. siRNAs targeting AIF and Endo G effectively attenuate β-lap-induced clonogenic and apoptotic cell death. Moreover, β-lap induces cleavage of Bax, which accumulates in mitochondria, coinciding with the observed changes in mitochondria membrane potential. Pretreatment with Salubrinal (Sal), an endoplasmic reticulum (ER) stress inhibitor, efficiently attenuates JNK activation caused by β-lap, and subsequent mitochondria-mediated cell death. In addition, β-lap-induced generation and mitochondrial translocation of cleaved Bax are efficiently blocked by JNK inhibition.Our results indicate that β-lap triggers induction of endoplasmic reticulum (ER) stress, thereby leading to JNK activation and mitochondria-mediated apoptosis. The signaling pathways that we revealed in this study may significantly contribute to an improvement of NQO1-directed tumor therapies

    High and low levels of an NTRK2-driven genetic profile affect motor- and cognition-associated frontal gray matter in prodromal Huntington’s disease

    Get PDF
    This study assessed how BDNF (brain-derived neurotrophic factor) and other genes involved in its signaling influence brain structure and clinical functioning in pre-diagnosis Huntington’s disease (HD). Parallel independent component analysis (pICA), a multivariate method for identifying correlated patterns in multimodal datasets, was applied to gray matter concentration (GMC) and genomic data from a sizeable PREDICT-HD prodromal cohort (N = 715). pICA identified a genetic component highlighting NTRK2, which encodes BDNF’s TrkB receptor, that correlated with a GMC component including supplementary motor, precentral/premotor cortex, and other frontal areas (p < 0.001); this association appeared to be driven by participants with high or low levels of the genetic profile. The frontal GMC profile correlated with cognitive and motor variables (Trail Making Test A (p = 0.03); Stroop Color (p = 0.017); Stroop Interference (p = 0.04); Symbol Digit Modalities Test (p = 0.031); Total Motor Score (p = 0.01)). A top-weighted NTRK2 variant (rs2277193) was protectively associated with Trail Making Test B (p = 0.007); greater minor allele numbers were linked to a better performance. These results support the idea of a protective role of NTRK2 in prodromal HD, particularly in individuals with certain genotypes, and suggest that this gene may influence the preservation of frontal gray matter that is important for clinical functioning.This project was supported by 1U01NS082074 (V.C. and J.T., co-principal investigators) from the National Institutes of Health, National Institute of Neurological Disorders and Stroke. The PREDICT-HD study was supported by NIH/NINDS grant 5R01NS040068 awarded to J.P.; CHDI Foundation, Inc., A3917 and 6266 awarded to J.P.; Cognitive and Functional Brain Changes in Preclinical Huntington’s Disease (HD) 5R01NS054893 awarded to J.P.; 4D Shape Analysis for Modeling Spatiotemporal Change Trajectories in Huntington’s 1U01NS082086; Functional Connectivity in Premanifest Huntington’s Disease 1U01NS082083; and Basal Ganglia Shape Analysis and Circuitry in Huntington’s Disease 1U01NS082085 awarded to Christopher A. Ross

    Role of nucleus accumbens core but not shell in incubation of methamphetamine craving after voluntary abstinence

    Get PDF
    We recently introduced an animal model to study incubation of drug craving after prolonged voluntary abstinence, mimicking the human condition of relapse after successful contingency management treatment. Here we studied the role of the nucleus accumbens (NAc) in this model. We trained rats to self-administer a palatable solution (sucrose+maltodextrin 1%, 6 h/day, 6 days) and methamphetamine (6 h/day, 12 days). We then evaluated relapse to methamphetamine seeking after 1 and 15 days of voluntary abstinence, achieved via a discrete choice procedure between the palatable solution and methamphetamine (14 days). We used RNAscope in-situ hybridization to quantify the co-labeling of the neuronal activity marker Fos, and dopamine Drd1- and Drd2-expressing medium spiny neurons (MSNs) in NAc core and shell during the incubation tests. Next, we determined the effect of pharmacological inactivation of NAc core and shell by either GABAA and GABAB agonists (muscimol+baclofen, 50+50 ng/side), Drd1-Drd2 antagonist (flupenthixol, 10 µg/side) or the selective Drd1 or Drd2 antagonists (SCH39166 1.0 µg/side or raclopride 1.0 µg/side) during the relapse tests. Incubated methamphetamine seeking after voluntary abstinence was associated with a selective increase of Fos expression in the NAc core, but not shell, and Fos was co-labeled with both Drd1- and Drd2-MSNs. NAc core, but not shell, injections of muscimol+baclofen, flupenthixol, SCH39166, and raclopride reduced methamphetamine seeking after 15 days of abstinence. Together, our results suggest that dopamine transmission through Drd1 and Drd2 in NAc core is critical to the incubation of methamphetamine craving after voluntary abstinence
    corecore