302 research outputs found
High-frequency Oscillations in Small Magnetic Elements Observed with Sunrise/SuFI
We characterize waves in small magnetic elements and investigate their
propagation in the lower solar atmosphere from observations at high spatial and
temporal resolution. We use the wavelet transform to analyze oscillations of
both horizontal displacement and intensity in magnetic bright points found in
the 300 nm and the Ca II H 396.8 nm passbands of the filter imager on board the
Sunrise balloon-borne solar observatory. Phase differences between the
oscillations at the two atmospheric layers corresponding to the two passbands
reveal upward propagating waves at high frequencies (up to 30 mHz). Weak
signatures of standing as well as downward propagating waves are also obtained.
Both compressible and incompressible (kink) waves are found in the small-scale
magnetic features. The two types of waves have different, though overlapping,
period distributions. Two independent estimates give a height difference of
approximately 450+-100 km between the two atmospheric layers sampled by the
employed spectral bands. This value, together with the determined short travel
times of the transverse and longitudinal waves provide us with phase speeds of
29+-2 km/s and 31+-2 km/s, respectively. We speculate that these phase speeds
may not reflect the true propagation speeds of the waves. Thus, effects such as
the refraction of fast longitudinal waves may contribute to an overestimate of
the phase speed.Comment: 14 pages, 7 figure
Migration of Ca II H bright points in the internetwork
The migration of magnetic bright point-like features (MBP) in the lower solar
atmosphere reflects the dispersal of magnetic flux as well as the horizontal
flows of the atmospheric layer they are embedded in. We analyse trajectories of
the proper motion of intrinsically magnetic, isolated internetwork Ca II H MBPs
(mean lifetime 461 +- 9 s) to obtain their diffusivity behaviour. We use
seeing-free high spatial and temporal resolution image sequences of quiet-Sun,
disc-centre observations obtained in the Ca II H 3968 {\AA} passband of the
Sunrise Filter Imager (SuFI) onboard the Sunrise balloon-borne solar
observatory. Small MBPs in the internetwork are automatically tracked. The
trajectory of each MBP is then calculated and described by a diffusion index
({\gamma}) and a diffusion coefficient (D). We further explore the distribution
of the diffusion indices with the help of a Monte Carlo simulation. We find
{\gamma} = 1.69 +- 0.08 and D = 257 +- 32 km^2/s averaged over all MBPs.
Trajectories of most MBPs are classified as super-diffusive, i.e., {\gamma} >
1, with the determined {\gamma} being to our knowledge the largest obtained so
far. A direct correlation between D and time-scale ({\tau}) determined from
trajectories of all MBPs is also obtained. We discuss a simple scenario to
explain the diffusivity of the observed, relatively short-lived MBPs while they
migrate within a small area in a supergranule (i.e., an internetwork area). We
show that the scatter in the {\gamma} values obtained for individual MBPs is
due to their limited lifetimes. The super-diffusive MBPs can be well-described
as random walkers (due to granular evolution and intergranular turbu- lence)
superposed on a large systematic (background) velocity, caused by granular,
mesogranular and supergranular flows.Comment: 10 pages, 7 figures, 3 table
Inclinations of small quiet-Sun magnetic features based on a new geometric approach
High levels of horizontal magnetic flux have been reported in the quiet-Sun
internetwork, often based on Stokes profile inversions. Here we introduce a new
method for deducing the inclination of magnetic elements and use it to test
magnetic field inclinations from inversions. We determine accurate positions of
a set of small, bright magnetic elements in high spatial resolution images
sampling different photospheric heights obtained by the Sunrise balloon-borne
solar observatory. Together with estimates of the formation heights of the
employed spectral bands, these provide us with the inclinations of the magnetic
features. We also compute the magnetic inclination angle of the same magnetic
features from the inversion of simultaneously recorded Stokes parameters. Our
new, geometric method returns nearly vertical fields (average inclination of
around 14 deg with a relatively narrow distribution having a standard deviation
of 6 deg). In strong contrast to this, the traditionally used inversions give
almost horizontal fields (average inclination of 75+-8 deg) for the same small
magnetic features, whose linearly polarised Stokes profiles are adversely
affected by noise. The almost vertical field of bright magnetic features from
our geometric method is clearly incompatible with the nearly horizontal
magnetic fields obtained from the inversions. This indicates that the amount of
magnetic flux in horizontal fields deduced from inversions is overestimated in
the presence of weak Stokes signals, in particular if Stokes Q and U are close
to or under the noise level. By combining the proposed method with inversions
we are not just improving the inclination, but also the field strength. This
technique allows us to analyse features that are not reliably treated by
inversions, thus greatly extending our capability to study the complete
magnetic field of the quiet Sun.Comment: 12 pages, 9 figures, 1 table; Accepted for publication in Astronomy &
Astrophysic
Morphological properties of slender Ca II H fibrils observed by SUNRISE II
We use seeing-free high spatial resolution Ca II H data obtained by the
SUNRISE observatory to determine properties of slender fibrils in the lower
solar chromosphere. In this work we use intensity images taken with the SUFI
instrument in the Ca II H line during the second scientific flight of the
SUNRISE observatory to identify and track elongated bright structures. After
the identification, we analyze theses structures in order to extract their
morphological properties. We identify 598 slender Ca II H fibrils (SCFs) with
an average width of around 180 km, a length between 500 km and 4000 km, an
average lifetime of ~400 s, and an average curvature of 0.002 arcsec^-1. The
maximum lifetime of the SCFs within our time series of 57 minutes is ~2000 s.
We discuss similarities and differences of the SCFs with other small-scale,
chromospheric structures such as spicules of type I and II, or Ca II K fibrils.Comment: Accepted for publication in The Astrophysical Journal Supplement
Serie
Kinematics of Magnetic Bright Features in the Solar Photosphere
Convective flows are known as the prime means of transporting magnetic fields
on the solar surface. Thus, small magnetic structures are good tracers of the
turbulent flows. We study the migration and dispersal of magnetic bright
features (MBFs) in intergranular areas observed at high spatial resolution with
Sunrise/IMaX. We describe the flux dispersal of individual MBFs as a diffusion
process whose parameters are computed for various areas in the quiet Sun and
the vicinity of active regions from seeing-free data. We find that magnetic
concentrations are best described as random walkers close to network areas
(diffusion index, gamma=1.0), travelers with constant speeds over a
supergranule (gamma=1.9-2.0), and decelerating movers in the vicinity of flux
emergence and/or within active regions (gamma=1.4-1.5). The three types of
regions host MBFs with mean diffusion coefficients of 130 km^2/s, 80-90 km^2/s,
and 25-70 km^2/s, respectively. The MBFs in these three types of regions are
found to display a distinct kinematic behavior at a confidence level in excess
of 95%.Comment: 8 pages, 4 figure
Influence of the initial chemical conditions on the rational design of silica particles
The influence of the water content in the initial composition on the size of silica particles produced using the Stöber process is well known. We have shown that there are three morphological regimes defined by compositional boundaries. At low water levels (below stoichiometric ratio of water:tetraethoxysilane), very high surface area and aggregated structures are formed; at high water content (>40 wt%) similar structures are also seen. Between these two boundary conditions, discrete particles are formed whose size are dictated by the water content. Within the compositional regime that enables the classical Stöber silica, the structural evolution shows a more rapid attainment of final particle size than the rate of formation of silica supporting the monomer addition hypothesis. The clearer understanding of the role of the initial composition on the output of this synthesis method will be of considerable use for the establishment of reliable reproducible silica production for future industrial adoption
- âŠ