83 research outputs found
Inverse mismatch and lesion growth in small subcortical ischaemic stroke
OBJECTIVE: Infarction typically develops within the borders of an initial hypoperfused tissue. We prospectively investigated whether in small subcortical stroke patients infarct growth can occur beyond the margins of the affected vascular territories.
METHODS: In 19 consecutive patients, stroke MRI was performed within 14 h after ictus, and at days 2 and 6 (± 1). Size of diffusion and perfusion disturbances were determined. Infarct volume measured on T2-weighted images on day 6 was considered as imaging endpoint.
RESULTS: At the initial examination, the mean diffusion lesion [apparent diffusion coefficient (ADC) lesion size, 1.82 ± 1.2 ml] was larger (p = 0.0002) than the perfusion lesion [mean transit time (MTT) lesion size, 0.72 ± 0.69 ml]. Such an "inverse mismatch" (ADC lesion > MTT lesion) was present in 14/19 patients at baseline and in all patients on day 2. Final lesion volume at day 6 was 3.2 ± 1.6 ml which was larger than the initial perfusion deficit (p = 0.02).
CONCLUSION: In small subcortical ischaemic stroke "inverse mismatch" is frequent and infarction develops beyond the initial perfusion disturbance. This indicates that cytotoxic processes probably triggered by the infarct core are a dominant mechanism for lesion growth. Areas with normal perfusion but which are threatened by cytotoxic damage developing over several days seem prime targets for neuroprotective therapy
Cancer cell invasion and EMT marker expression: A three-dimensional study of the human cancer-host interface
Cancer cell invasion takes place at the cancer-host interface and is a prerequisite for distant metastasis. The relationships between current biological and clinical concepts such as cell migration modes, tumour budding and epithelial-mesenchymal transition (EMT) remains unclear in several aspects, especially for the 'real' situation in human cancer. We developed a novel method that provides exact three-dimensional (3D) information on both microscopic morphology and gene expression, over a virtually unlimited spatial range, by reconstruction from serial immunostained tissue slices. Quantitative 3D assessment of tumour budding at the cancer-host interface in human pancreatic, colorectal, lung and breast adenocarcinoma suggests collective cell migration as the mechanism of cancer cell invasion, while single cancer cell migration seems to be virtually absent. Budding tumour cells display a shift towards spindle-like as well as a rounded morphology. This is associated with decreased E-cadherin staining intensity and a shift from membranous to cytoplasmic staining, as well as increased nuclear ZEB1 expression
- …