5,260 research outputs found

    Hole polaron formation and migration in olivine phosphate materials

    Full text link
    By combining first principles calculations and experimental XPS measurements, we investigate the electronic structure of potential Li-ion battery cathode materials LiMPO4 (M=Mn,Fe,Co,Ni) to uncover the underlying mechanisms that determine small hole polaron formation and migration. We show that small hole polaron formation depends on features in the electronic structure near the valence-band maximum and that, calculationally, these features depend on the methodology chosen for dealing with the correlated nature of the transition-metal d-derived states in these systems. Comparison with experiment reveals that a hybrid functional approach is superior to GGA+U in correctly reproducing the XPS spectra. Using this approach we find that LiNiPO4 cannot support small hole polarons, but that the other three compounds can. The migration barrier is determined mainly by the strong or weak bonding nature of the states at the top of the valence band, resulting in a substantially higher barrier for LiMnPO4 than for LiCoPO4 or LiFePO4

    Massive Quark Production in Electron Positron Annihilation to Order αs2\alpha_s^2

    Full text link
    Recent analytical and numerical results for the three-loop polarization function allow to present a phenomenological analysis of the cross section for massive quark production in electron positron annihilation to order αs2\alpha_s^2. Numerical predictions based on fixed order perturbation theory are presented for charm and bottom production above 5 and 11.5 GeV, respectively. The contribution from these energy regions to α(MZ2)\alpha(M_Z^2), the running QED coupling constant at scale M_Z, are given. The dominant terms close to threshold, i.e. in an expansion for small quark velocity β\beta, are presented.Comment: 26 pages (Latex), 16 figures (Postscript

    Top Quark Pair Production close to Threshold: Top Mass, Width and Momentum Distribution

    Full text link
    The complete NNLO QCD corrections to the total cross section σ(e+eZ,γttˉ)\sigma(e^+e^- \to Z*,\gamma*\to t\bar t) in the kinematic region close to the top-antitop threshold are calculated by solving the corresponding Schroedinger equations exactly in momentum space in a consistent momentum cutoff regularization scheme. The corrections coming from the same NNLO QCD effects to the top quark three-momentum distribution dσ/dktd\sigma/d |\vec k_t| are determined. We discuss the origin of the large NNLO corrections to the peak position and the normalization of the total cross section observed in previous works and propose a new top mass definition, the 1S mass M_1S, which stabilizes the peak in the total cross section. If the influence of beamstrahlung and initial state radiation on the mass determination is small, a theoretical uncertainty on the 1S top mass measurement of 200 MeV from the total cross section at the linear collider seems possible. We discuss how well the 1S mass can be related to the MSˉ\bar{MS} mass. We propose a consistent way to implement the top quark width at NNLO by including electroweak effects into the NRQCD matching coefficients, which then can become complex.Comment: 53 pages, latex; minor changes, a number of typos correcte

    1S and MSbar Bottom Quark Masses from Upsilon Sum Rules

    Full text link
    The bottom quark 1S mass, Mb1SM_b^{1S}, is determined using sum rules which relate the masses and the electronic decay widths of the Υ\Upsilon mesons to moments of the vacuum polarization function. The 1S mass is defined as half the perturbative mass of a fictitious 3S1{}^3S_1 bottom-antibottom quark bound state, and is free of the ambiguity of order ΛQCD\Lambda_{QCD} which plagues the pole mass definition. Compared to an earlier analysis by the same author, which had been carried out in the pole mass scheme, the 1S mass scheme leads to a much better behaved perturbative series of the moments, smaller uncertainties in the mass extraction and to a reduced correlation of the mass and the strong coupling. We arrive at Mb1S=4.71±0.03M_b^{1S}=4.71\pm 0.03 GeV taking αs(MZ)=0.118±0.004\alpha_s(M_Z)=0.118\pm 0.004 as an input. From that we determine the MSˉ\bar{MS} mass as mˉb(mˉb)=4.20±0.06\bar m_b(\bar m_b) = 4.20 \pm 0.06 GeV. The error in mˉb(mˉb)\bar m_b(\bar m_b) can be reduced if the three-loop corrections to the relation of pole and MSˉ\bar{MS} mass are known and if the error in the strong coupling is decreased.Comment: 20 pages, latex; numbers in Tabs. 2,3,4 corrected, a reference and a comment on the fitting procedure added, typos in Eqs. 2 and 23 eliminate

    Top quark mass definition and top quark pair production near threshold at the NLC

    Full text link
    We suggest an infrared-insensitive quark mass, defined by subtracting the soft part of the quark self energy from the pole mass. We demonstrate the deep relation of this definition with the static quark-antiquark potential. At leading order in 1/m this mass coincides with the PS mass which is defined in a completely different manner. Going beyond static limit, the small normalization point introduces recoil corrections which are calculated here as well. Using this mass concept and other concepts for the quark mass we calculate the cross section of e+ e- -> t t-bar near threshold at NNLO accuracy adopting three alternative approaches, namely (1) fixing the pole mass, (2) fixing the PS mass, and (3) fixing the new mass which we call the PS-bar mass. We demonstrate that perturbative predictions for the cross section become much more stable if we use the PS or the PS-bar mass for the calculations. A careful analysis suggests that the top quark mass can be extracted from a threshold scan at NLC with an accuracy of about 100-200 MeV.Comment: published version, 21 pages in LaTeX including 11 PostScript figure

    The Threshold t-tbar Cross Section at NNLL Order

    Full text link
    The total cross section for top quark pair production close to threshold in e+e- annihilation is investigated. Details are given about the calculation at next-to-next-to-leading logarithmic order. The summation of logarithms leads to a convergent expansion for the normalization of the cross section, and small residual dependence on the subtraction parameter nu. A detailed analysis of the residual nu dependence is carried out. A conservative estimate for the remaining uncertainty in the normalization of the total cross section from QCD effects is ±3\lesssim \pm 3%. This makes precise extractions of the strong coupling and top width feasible, and further studies of electroweak effects mandatory.Comment: 33 pages, 11 figs, a program to produce the cross section will be available soo

    Feed-forward Torque Control of Interior Permanent Magnet Brushless AC Drive for Traction Applications

    Get PDF
    This paper presents a feed-forward torque control (FTC) technique for interior permanent magnet (IPM) brushless AC (BLAC) drives in traction applications. It is shown that by adopting the Newton-Raphson iterative method for solving the proposed high-order nonlinear relationship between the torque demand, flux-linkage and desirable dq-axis currents, FTC with due account of nonlinear machine parameters can be achieved for IPM BLAC drives. It is also proven that the comparison between the reference voltage magnitudes under maximum torque per ampere (MTPA) and field-weakening (FW) operations together with online base speed determination can be utilized for FW operation activation to achieve full exploitation of the available DC-link voltage during the transition between the constant torque and FW operation regions. Since both the dqaxis current references and the base speed for FW operation activation are computed online, the proposed FTC technique provides flexibility for online parameter update or estimation and is able to cope with wide DC-link voltage variation. The proposed FTC strategy is experimentally validated by measurements on a 10kW wide constant power speed range (CPSR) IPM BLAC machine drive

    Wigner-Seitz cells in neutron star crust with finite range interactions

    Full text link
    The structure of Wigner-Seitz cells in the inner crust of neutron stars is investigated using a microcospic Hartree-Fock-BCS approach with finite range D1S and M3Y-P4 interactions. Large effects on the densities are found compared to previous predictions using Skyrme interactions. Pairing effects are found to be small, and they are attenuated by the use of finite range interactions in the mean field.Comment: 11 pages, 5 figure

    Unified Description of Freeze-Out Parameters in Relativistic Heavy Ion Collisions

    Full text link
    It is shown that the chemical freeze-out parameters obtained at CERN/SPS, BNL/AGS and GSI/SIS energies all correspond to a unique value of 1 GeV per hadron in the local rest frame of the system, independent of the beam energy and of the target and beam particles.Comment: revtex, 1 figur
    corecore