28 research outputs found
Sharing More than Friendship — Nasal Colonization with Coagulase-Positive Staphylococci (CPS) and Co-Habitation Aspects of Dogs and Their Owners
BACKGROUND: Since the relationship between dogs and their owners has changed, and dogs moved from being working dogs to family members in post-industrial countries, we hypothesized that zoonotic transmission of opportunistic pathogens like coagulase positive staphylococci (CPS) is likely between dogs and their owners. METHODOLOGY/PRINCIPAL FINDINGS: CPS- nasal carriage, different aspects of human-to-dog relationship as well as potential interspecies transmission risk factors were investigated by offering nasal swabs and a questionnaire to dog owners (108) and their dogs (108) at a dog show in 2009. S. aureus was found in swabs of 20 (18.5%) humans and two dogs (1.8%), and spa types which correspond to well known human S. aureus lineages dominated (e.g. CC45, CC30 and CC22). Multilocus sequence typing (MLST) of the two canine strains revealed ST72 and ST2065 (single locus variant of ST34). Fifteen dogs (13.9%) and six owners (5.6%) harboured S. pseudintermedius, including one mecA-positive human isolate (MRSP). Pulsed field gel electrophoresis (PFGE) revealed that one dog/owner pair harboured indistinguishable S. pseudintermedius- isolates of ST33. Ten (48%) of the 21 S. pseudintermedius-isolates showed resistance towards more than one antimicrobial class. 88.9% of the dog owners reported to allow at least one dog into the house, 68.5% allow the dog(s) to rest on the sofa, 39.8% allow their dogs to come onto the bed, 93.5% let them lick their hands and 52.8% let them lick their face. Bivariate analysis of putative risk factors revealed that dog owners who keep more than two dogs have a significantly higher chance of being colonized with S. pseudintermedius than those who keep 1-2 dogs (p<0.05). CONCLUSIONS/RECOMMENDATIONS: In conclusion, CPS transmission between dog owners and their dogs is possible. Further investigation regarding interspecies transmission and the diverse adaptive pathways influencing the epidemiology of CPS (including MRSA and MRSP) in different hosts is needed
Protective efficacy of an IL-12-expressing baculoviral malaria vaccine
Interleukin-12 (IL-12) plays an important role in antigen-specific adaptive immunity against Plasmodium sporozoites, and this requirement allows for a new approach to developing an effective malaria vaccine. In this study, we examined whether IL-12 could enhance protective efficacy of a baculovirus-based malaria vaccine. For this aim, a baculoviral vector expressing murine IL-12 (mIL-12) under the control of CMV promoter (BES-mIL-12-Spider) and a baculoviral vector expressing Plasmodium falciparum circumsporozoite protein (PfCSP) with post-transcriptional regulatory element of woodchuck hepatitis virus (BDES-sPfCSP2-WPRE-Spider) were generated. BES-mIL-12-Spider produced bioactive IL-12 which activates splenocytes, resulting in induction of IFN-γ. When co-immunized with BES-mIL-12-Spider and BDES-sPfCSP2-WPRE-Spider, the mouse number for high IgG2a/IgG1 ratios and the geometric mean in this group were both increased as compared with those of the other groups, indicating a shift towards a Th1-type response following immunization with BES-mIL-12-Spider. Finally, immunization with BDES-sPfCSP2-WPRE-Spider plus BES-mIL-12-Spider had a higher protective efficacy (73%) than immunization with BDES-sPfCSP2-WPRE-Spider alone (30%) against challenge with transgenic Plasmodium berghei sporozoites expressing PfCSP. These results suggest that co-administration of IL-12 expressing baculoviral vector, instead of IL-12 cDNA, with viral-vectored vaccines provides a new feasible vaccine platform to enhance Th1-type cellular immune responses against Plasmodium parasites
Clinical effects of combined <i>Lactobacillus paracasei</i> and kestose on canine atopic dermatitis
Probiotics and prebiotics are viable bacteria with beneficial effects on the host and components that selectively act on the beneficial commensal bacteria, respectively. The combined use of probiotics and prebiotics is termed synbiotics. Probiotic intake improves dysbiosis in the intestinal microbiota and can positively affect canine atopic dermatitis (CAD). However, clinical studies on improvements in CAD using synbiotics remain limited.
In this study, 15 dogs with CAD who received prednisolone, a synthetic glucocorticoid (GC) used in the treatment of CAD, for more than 90 days were continuously treated with Lactobacillus paracasei M-1 from fermented food as a probiotic, and trisaccharide kestose as a prebiotic, for 90 days to determine their synbiotic effects on CAD. The CAD symptoms were evaluated using the canine atopic dermatitis lesion index (CADLI) and pruritus visual analog scores (PVAS) at 30, 60 and 90 days after synbiotic administration. The total prednisolone use for 90 days pre- and post-administration was also evaluated.
Synbiotic administration significantly reduced the CADLI (pre: median, 28.0 [22.0-32.0]; 30 days: median, 20.0 [20.0−28.0]; 60 days: median, 20.0 [10.0−21.0]; 90 days: median, 12.0 [10.0-19.0]) and PVAS (pre: median, 6.0 [5.0-7.0]; 30 days: median, 3.0 [3.0-3.5]; 60 days: median, 3.0 [3.0-3.5]; 90 days: median, 2.0 [2.0-3.5]) scores, and reduced the total prednisone use over 90 days (pre: 112.0 [25-450] mg; post: 80.0 [18.-300.0] mg; p<0.001) in the 15 dogs. Thus, the synbiotic activity of L. paracasei M-1 and trisaccharide kestose can improve CAD