212 research outputs found

    Spectral Statistics and Luminosity Function of a Hard X-ray Complete Sample of Brightest AGNs

    Full text link
    We investigated the statistics of the X-ray spectral properties of a complete flux-limited sample of bright AGNs from HEAO-1 all-sky catalogs to provide the bright end constraint of the evolution of AGN hard X-ray luminosity function (HXLF) and the AGN population synthesis model of the X-ray background. Spectral studies have been made using ASCA and XMM-Newton observation data for almost all AGNs in this sample.Comment: PTPTex v0.88, 2 pages with 4 figures, Proceedings of the "Stellar-Mass, Intermediate -Masss, and Supermassive Black Holes" in Kyoto, Japa

    X-Ray Study of the Outer Region of Abell 2142 with Suzaku

    Full text link
    We observed outer regions of a bright cluster of galaxies A2142 with Suzaku. Temperature and brightness structures were measured out to the virial radius (r200r_{200}) with good sensitivity. We confirmed the temperature drop from 9 keV around the cluster center to about 3.5 keV at r200r_{200}, with the density profile well approximated by the β\beta model with β=0.85\beta = 0.85. Within 0.4\r_{200}, the entropy profile agrees with r1.1r^{1.1}, as predicted by the accretion shock model. The entropy slope becomes flatter in the outer region and negative around r200r_{200}. These features suggest that the intracluster medium in the outer region is out of thermal equilibrium. Since the relaxation timescale of electron-ion Coulomb collision is expected to be longer than the elapsed time after shock heating at r200r_{200}, one plausible reason of the low entropy is the low electron temperature compared to that of ions. Other possible explanations would be gas clumpiness, turbulence and bulk motions of ICM\@. We also searched for a warm-hot intergalactic medium around r200r_{200} and set an upper limit on the oxygen line intensity. Assuming a line-of-sight depth of 2 Mpc and oxygen abundance of 0.1 solar, the upper limit of an overdensity is calculated to be 280 or 380, depending on the foreground assumption.Comment: 14 pages, 8 figure

    Properties of the cosmological filament between two clusters: A possible detection of a large-scale accretion shock by SuzakuSuzaku

    Get PDF
    We report on the results of a SuzakuSuzaku observation of the plasma in the filament located between the two massive clusters of galaxies Abell 399 and Abell 401. Abell 399 (zz=0.0724) and Abell 401 (zz=0.0737) are expected to be in the initial phase of a cluster merger. In the region between the two clusters, we find a clear enhancement in the temperature of the filament plasma from 4 keV (expected value from a typical cluster temperature profile) to kTkT\sim6.5 keV. Our analysis also shows that filament plasma is present out to a radial distance of 15' (1.3 Mpc) from a line connecting the two clusters. The temperature profile is characterized by an almost flat radial shape with kTkT\sim6-7 keV within 10' or \sim0.8 Mpc. Across rr=8'~from the axis, the temperature of the filament plasma shows a drop from 6.3 keV to 5.1 keV, indicating the presence of a shock front. The Mach number based on the temperature drop is estimated to be M{\cal M}\sim1.3. We also successfully determined the abundance profile up to 15' (1.3 Mpc), showing an almost constant value (ZZ=0.3 solar) at the cluster outskirt. We estimated the Compton yy-parameter to be \sim14.5±1.3×106\pm1.3\times10^{-6}, which is in agreement with PlanckPlanck's results (14-17×106\times10^{-6} on the filament). The line of sight depth of the filament is ll\sim1.1 Mpc, indicating that the geometry of filament is likely a pancake shape rather than cylindrical. The total mass of the filamentary structure is \sim7.7×1013 M\times10^{13}~\rm M_{\odot}. We discuss a possible interpretation of the drop of X-ray emission at the rim of the filament, which was pushed out by the merging activity and formed by the accretion flow induced by the gravitational force of the filament.Comment: 8 pages, 8 figures, accepted for publication in A&

    On why the Iron K-shell absorption in AGN is not a signature of the local Warm/Hot Intergalactic Medium

    Full text link
    We present a comparison between the 2001 XMM-Newton and 2005 Suzaku observations of the quasar, PG1211+143 at z=0.0809. Variability is observed in the 7 keV iron K-shell absorption line (at 7.6 keV in the quasar frame), which is significantly weaker in 2005 than during the 2001 XMM-Newton observation. From a recombination timescale of <4 years, this implies an absorber density n>0.004 particles/cm3, while the absorber column is 5e22<N_H <1 1e24 particles/cm2. Thus the sizescale of the absorber is too compact (pc scale) and the surface brightness of the dense gas too high (by 9-10 orders of magnitude) to arise from local hot gas, such as the local bubble, group or Warm/Hot Intergalactic Medium (WHIM), as suggested by McKernan et al. (2004, 2005). Instead the iron K-shell absorption must be associated with an AGN outflow with mildly relativistic velocities. Finally we show that the the association of the absorption in PG1211+143 with local hot gas is simply a coincidence, the comparison between the recession and iron K absorber outflow velocities in other AGN does not reveal a one to one kinematic correlation.Comment: accepted for publication in MNRAS LETTERS. 5 pages, 4 figure

    Locating the Warm-Hot Intergalactic Medium in the Simulated Local Universe

    Full text link
    We present an analysis of mock spectral observation of warm-hot intergalactic medium (WHIM) using a constrained simulation of the local universe. The simulated map of oxygen emission lines from local WHIM reproduces well the observed structures traced by galaxies in the real local universe. We further attempt to perform mock observations of outer parts of simulated Coma cluster and A3627 adopting the expected performance of DIOS (Diffuse Intergalactic Oxygen Surveyor), which is proposed as a dedicated soft X-ray mission to search for cosmic missing baryons. We find that WHIMs surrounding nearby clusters are detectable with a typical exposure time of a day, and thus constitute realistic and promising targets for DIOS. We also find that an X-ray emitting clump in front of Coma cluster, recently reported in the XMM-Newton observation, has a counterpart in the simulated local universe, and its observed spectrum can be well reproduced in the simulated local universe if the gas temperature is set to the observationally estimated value.Comment: 25 pages, 3 tables, 16 figures. Accepted for publication in PASJ. High resolution PS/PDF files are available at http://www-utap.phys.s.u-tokyo.ac.jp/~kohji/research/x-ray/index.htm

    DIOS: the dark baryon exploring mission

    Full text link
    DIOS (Diffuse Intergalactic Oxygen Surveyor) is a small satellite aiming for a launch around 2020 with JAXA's Epsilon rocket. Its main aim is a search for warm-hot intergalactic medium with high-resolution X-ray spectroscopy of redshifted emission lines from OVII and OVIII ions. The superior energy resolution of TES microcalorimeters combined with a very wide field of view (30--50 arcmin diameter) will enable us to look into gas dynamics of cosmic plasmas in a wide range of spatial scales from Earth's magnetosphere to unvirialized regions of clusters of galaxies. Mechanical and thermal design of the spacecraft and development of the TES calorimeter system are described. We also consider revising the payload design to optimize the scientific capability allowed by the boundary conditions of the small mission.Comment: 10 pages, 11 figures, Proceedings of the SPIE Astronomical Instrumentation : Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ra

    Detection of Excess Hard X-ray Emission from the Group of Galaxies HCG62

    Get PDF
    From the group of galaxies HCG62, we detected an excess hard X-ray emission in energies above 4\sim 4 keV with \A SCA. The excess emission is spatially extended up to 10\sim10' from the group center, and somewhat enhanced toward north. Its spectrum can be represented by either a power-law of photon index 0.8-2.7, or a Bremsstrahlung of temperature >6.3>6.3 keV. In the 2-10 keV range, the observed hard X-ray flux, (1.0±0.3)×1012(1.0\pm0.3)\times10^{-12} erg cm2^{-2} s1^{-1}, implies a luminosity of (8.0±2.0)×1041(8.0\pm2.0)\times10^{41} erg s1^{-1} for a Hubble constant of 50 km s1^{-1} Mpc1^{-1}. The emission is thus too luminous to be attributed to X-ray binaries in the memb er galaxies. We discuss possible origin of the hard X-ray emission.Comment: 6 pages, 3 Postscript figures, uses emulateapj.sty. Accepted for publication in the Astrophysical Journal Letter
    corecore