214 research outputs found
Conditioned Variation: Children Replicate Contrasts, not Parental Variant Rate
One of the fundamental questions within developmental sociolinguistics, and language acquisition research more broadly, has to do with children’s reaction to variability in their input or primary linguistic data (e.g. Labov 1989, Yang 2002, Hudson Kam and Newport 2005, Smith et al. 2009, Cournane and Pérez-Leroux 2020). As has been extensively documented, children overgeneralize and regularize both consistent (Marcus et al. 1992) and inconsistent (Hudson Kam and Newport 2005) input. Despite this tendency to go beyond the input, we do expect children to learn their caregivers’ dialect, and they have in fact been known to match the rates of variation found in their environment (Labov 1989, Johnson and White 2019). The literature therefore shows both regularization and matching, but under different circumstances. In this paper, we argue for a third scenario and present a case where children neither regularize nor match their caregiver. Instead, they replicate the systematic contrasts they encounter and regularize within matched conditions. This is what happens in the acquisition of Icelandic Dative Substitution (DS), a stigmatized but widespread instance of grammatically conditioned morphosyntactic variation. We investigated DS in 99 children aged 3–13 and their caregivers (80 dyads) by using forced-choice tasks and grammaticality judgments across multiple items as a proxy for case use. The results show that caregivers’ general DS rate did not predict the rate at which their children selected DS, regardless of age. On the other hand, when analyzing the data within conditioning factors, we found that children replicate the contrasts present in their caregivers’ speech, both at the group and individual level, and that this was in part dependent on age
Context-Sensitive Spelling Correction and Rich Morphology
Proceedings of the 17th Nordic Conference of Computational Linguistics
NODALIDA 2009.
Editors: Kristiina Jokinen and Eckhard Bick.
NEALT Proceedings Series, Vol. 4 (2009), 231-234.
© 2009 The editors and contributors.
Published by
Northern European Association for Language
Technology (NEALT)
http://omilia.uio.no/nealt .
Electronically published at
Tartu University Library (Estonia)
http://hdl.handle.net/10062/9206
Identification of a novel neuregulin 1 at-risk haplotype in Han schizophrenia Chinese patients, but no association with the Icelandic/Scottish risk haplotype.
To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldTo determine if neuregulin 1 (NRG1) is associated with schizophrenia in Asian populations, we investigated a Han Chinese population using both a family trio design and a case-control design. A total of 25 microsatellite markers and single nucleotide polymorphisms (SNPs) were genotyped spanning the 1.1 Mb NRG1 gene including markers of a seven-marker haplotype at the 5' end of the gene found to be in excess in Icelandic and Scottish schizophrenia patients. The alleles of the individual markers forming the seven marker at-risk haplotype are not likely to be causative as they are not in excess in patients in the Chinese population studied here. However using unrelated patients, we find a novel haplotype (HAP(China 1)), immediately upstream of the Icelandic haplotype, in excess in patients (11.9% in patients vs 4.2% in controls; P=0.0000065, risk ratio (rr) 3.1), which was not significant when parental controls were used. Another haplotype (HAP(China 2)) overlapping the Icelandic risk haplotype was found in excess in the Chinese (8.5% of patients vs 4.0% of unrelated controls; P=0.003, rr 2.2) and was also significant using parental controls only (P=0.0047, rr 2.1). A four-marker haplotype at the 3' end of the NRG1 gene, HAP(China 3), was found at a frequency of 23.8% in patients and 13.7% in nontransmitted parental haplotypes (P=0.000042, rr=2.0) but was not significant in the case-control comparison. We conclude that different haplotypes within the boundaries of the NRG1 gene may be associated with schizophrenia in the Han Chinese
High frequency of known copy number abnormalities and maternal duplication 15q11-q13 in patients with combined schizophrenia and epilepsy
<p>Abstract</p> <p>Background</p> <p>Many copy number variants (CNVs) are documented to be associated with neuropsychiatric disorders, including intellectual disability, autism, epilepsy, schizophrenia, and bipolar disorder. Chromosomal deletions of 1q21.1, 3q29, 15q13.3, 22q11.2, and <it>NRXN1 </it>and duplications of 15q11-q13 (maternal), 16p11, and 16p13.3 have the strongest association with schizophrenia. We hypothesized that cases with both schizophrenia and epilepsy would have a higher frequency of disease-associated CNVs and would represent an enriched sample for detection of other mutations associated with schizophrenia.</p> <p>Methods</p> <p>We used array comparative genomic hybridization (CGH) to analyze 235 individuals with both schizophrenia and epilepsy, 80 with bipolar disorder and epilepsy, and 191 controls.</p> <p>Results</p> <p>We detected 10 schizophrenia plus epilepsy cases in 235 (4.3%) with the above mentioned CNVs compared to 0 in 191 controls (p = 0.003). Other likely pathological findings in schizophrenia plus epilepsy cases included 1 deletion 16p13 and 1 duplication 7q11.23 for a total of 12/235 (5.1%) while a possibly pathogenic duplication of 22q11.2 was found in one control for a total of 1 in 191 (0.5%) controls (p = 0.008). The rate of abnormality in the schizophrenia plus epilepsy of 10/235 for the more definite CNVs compares to a rate of 75/7336 for these same CNVs in a series of unselected schizophrenia cases (p = 0.0004).</p> <p>Conclusion</p> <p>We found a statistically significant increase in the frequency of CNVs known or likely to be associated with schizophrenia in individuals with both schizophrenia and epilepsy compared to controls. We found an overall 5.1% detection rate of likely pathological findings which is the highest frequency of such findings in a series of schizophrenia patients to date. This evidence suggests that the frequency of disease-associated CNVs in patients with both schizophrenia and epilepsy is significantly higher than for unselected schizophrenia.</p
The selection landscape and genetic legacy of ancient Eurasians
The Holocene (beginning around 12,000 years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using a dataset of more than 1,600 imputed ancient genomes 1, we modelled the selection landscape during the transition from hunting and gathering, to farming and pastoralism across West Eurasia. We identify key selection signals related to metabolism, including that selection at the FADS cluster began earlier than previously reported and that selection near the LCT locus predates the emergence of the lactase persistence allele by thousands of years. We also find strong selection in the HLA region, possibly due to increased exposure to pathogens during the Bronze Age. Using ancient individuals to infer local ancestry tracts in over 400,000 samples from the UK Biobank, we identify widespread differences in the distribution of Mesolithic, Neolithic and Bronze Age ancestries across Eurasia. By calculating ancestry-specific polygenic risk scores, we show that height differences between Northern and Southern Europe are associated with differential Steppe ancestry, rather than selection, and that risk alleles for mood-related phenotypes are enriched for Neolithic farmer ancestry, whereas risk alleles for diabetes and Alzheimer’s disease are enriched for Western hunter-gatherer ancestry. Our results indicate that ancient selection and migration were large contributors to the distribution of phenotypic diversity in present-day Europeans
The selection landscape and genetic legacy of ancient Eurasians
The Holocene (beginning around 12,000 years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using a dataset of more than 1,600 imputed ancient genomes, we modelled the selection landscape during the transition from hunting and gathering, to farming and pastoralism across West Eurasia. We identify key selection signals related to metabolism, including that selection at the FADS cluster began earlier than previously reported and that selection near the LCT locus predates the emergence of the lactase persistence allele by thousands of years. We also find strong selection in the HLA region, possibly due to increased exposure to pathogens during the Bronze Age. Using ancient individuals to infer local ancestry tracts in over 400,000 samples from the UK Biobank, we identify widespread differences in the distribution of Mesolithic, Neolithic and Bronze Age ancestries across Eurasia. By calculating ancestry-specific polygenic risk scores, we show that height differences between Northern and Southern Europe are associated with differential Steppe ancestry, rather than selection, and that risk alleles for mood-related phenotypes are enriched for Neolithic farmer ancestry, whereas risk alleles for diabetes and Alzheimer’s disease are enriched for Western hunter-gatherer ancestry. Our results indicate that ancient selection and migration were large contributors to the distribution of phenotypic diversity in present-day Europeans
Rare and Common Variants Conferring Risk of Tooth Agenesis
We present association results from a large genome-wide association study of tooth agenesis (TA) as well as selective TA, including 1,944 subjects with congenitally missing teeth, excluding third molars, and 338,554 controls, all of European ancestry. We also tested the association of previously identified risk variants, for timing of tooth eruption and orofacial clefts, with TA. We report associations between TA and 9 novel risk variants. Five of these variants associate with selective TA, including a variant conferring risk of orofacial clefts. These results contribute to a deeper understanding of the genetic architecture of tooth development and disease. The few variants previously associated with TA were uncovered through candidate gene studies guided by mouse knockouts. Knowing the etiology and clinical features of TA is important for planning oral rehabilitation that often involves an interdisciplinary approach
- …