188 research outputs found
Long-Lost Relative Claims Orphan Gene: oskar in a Wasp
Organismic and Evolutionary Biolog
THE SURFACE FEATURES OF DROSOPHILA EMBRYONIC CELL LINES
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73303/1/j.1440-169X.1977.00345.x.pd
Cytogerontology since 1881: A reappraisal of August Weismann and a review of modern progress
Cytogerontology, the science of cellular ageing, originated in 1881 with the prediction by August Weismann that the somatic cells of higher animals have limited division potential. Weismann's prediction was derived by considering the role of natural selection in regulating the duration of an organism's life. For various reasons, Weismann's ideas on ageing fell into neglect following his death in 1914, and cytogerontology has only reappeared as a major research area following the demonstration by Hayflick and Moorhead in the early 1960s that diploid human fibroblasts are restricted to a finite number of divisions in vitro.
In this review we give a detailed account of Weismann's theory, and we reveal that his ideas were both more extensive in their scope and more pertinent to current research than is generally recognised. We also appraise the progress which has been made over the past hundred years in investigating the causes of ageing, with particular emphasis being given to (i) the evolution of ageing, and (ii) ageing at the cellular level. We critically assess the current state of knowledge in these areas and recommend a series of points as primary targets for future research
The Phylogenetic Origin of oskar Coincided with the Origin of Maternally Provisioned Germ Plasm and Pole Cells at the Base of the Holometabola
The establishment of the germline is a critical, yet surprisingly evolutionarily
labile, event in the development of sexually reproducing animals. In the fly
Drosophila, germ cells acquire their fate early during
development through the inheritance of the germ plasm, a specialized maternal
cytoplasm localized at the posterior pole of the oocyte. The gene
oskar (osk) is both necessary and
sufficient for assembling this substance. Both maternal germ plasm and
oskar are evolutionary novelties within the insects, as the
germline is specified by zygotic induction in basally branching insects, and
osk has until now only been detected in dipterans. In order
to understand the origin of these evolutionary novelties, we used comparative
genomics, parental RNAi, and gene expression analyses in multiple insect
species. We have found that the origin of osk and its role in
specifying the germline coincided with the innovation of maternal germ plasm and
pole cells at the base of the holometabolous insects and that losses of
osk are correlated with changes in germline determination
strategies within the Holometabola. Our results indicate that the invention of
the novel gene osk was a key innovation that allowed the
transition from the ancestral late zygotic mode of germline induction to a
maternally controlled establishment of the germline found in many holometabolous
insect species. We propose that the ancestral role of osk was
to connect an upstream network ancestrally involved in mRNA localization and
translational control to a downstream regulatory network ancestrally involved in
executing the germ cell program
Regulatory elements and transcriptional control of chicken vasa homologue (CVH) promoter in chicken primordial germ cells
BACKGROUND: Primordial germ cells (PGCs), the precursors of functional gametes, have distinct characteristics and exhibit several unique molecular mechanisms to maintain pluripotency and germness in comparison to somatic cells. They express germ cell-specific RNA binding proteins (RBPs) by modulating tissue-specific cis- and trans-regulatory elements. Studies on gene structures of chicken vasa homologue (CVH), a chicken RNA binding protein, involved in temporal and spatial regulation are thus important not only for understanding the molecular mechanisms that regulate germ cell fate, but also for practical applications of primordial germ cells. However, very limited studies are available on regulatory elements that control germ cell-specific expression in chicken. Therefore, we investigated the intricate regulatory mechanism(s) that governs transcriptional control of CVH. RESULTS: We constructed green fluorescence protein (GFP) or luciferase reporter vectors containing the various 5β² flanking regions of CVH gene. From the 5β² deletion and fragmented assays in chicken PGCs, we have identified a CVH promoter that locates at β316 to +275 base pair fragment with the highest luciferase activity. Additionally, we confirmed for the first time that the 5β² untranslated region (UTR) containing intron 1 is required for promoter activity of the CVH gene in chicken PGCs. Furthermore, using a transcription factor binding prediction, transcriptome analysis and siRNA-mediated knockdown, we have identified that a set of transcription factors play a role in the PGC-specific CVH gene expression. CONCLUSIONS: These results demonstrate that cis-elements and transcription factors localizing in the 5β² flanking region including the 5β² UTR and an intron are important for transcriptional regulation of the CVH gene in chicken PGCs. Finally, this information will contribute to research studies in areas of reproductive biology, constructing of germ cell-specific synthetic promoter for tracing primordial germ cells as well as understanding the transcriptional regulation for maintaining germness in PGCs
Doubly Uniparental Inheritance of Mitochondria As a Model System for Studying Germ Line Formation
BACKGROUND: Doubly Uniparental Inheritance (DUI) of mitochondria occurs when both mothers and fathers are capable of transmitting mitochondria to their offspring, in contrast to the typical Strictly Maternal Inheritance (SMI). DUI was found in some bivalve molluscs, in which two mitochondrial genomes are inherited, one through eggs, the other through sperm. During male embryo development, spermatozoon mitochondria aggregate in proximity of the first cleavage furrow and end up in the primordial germ cells, while they are dispersed in female embryos. METHODOLOGY/PRINCIPAL FINDINGS: We used MitoTracker, microtubule staining and transmission electron microscopy to examine the mechanisms of this unusual distribution of sperm mitochondria in the DUI species Ruditapes philippinarum. Our results suggest that in male embryos the midbody deriving from the mitotic spindle of the first division concurs in positioning the aggregate of sperm mitochondria. Furthermore, an immunocytochemical analysis showed that the germ line determinant Vasa segregates close to the first cleavage furrow. CONCLUSIONS/SIGNIFICANCE: In DUI male embryos, spermatozoon mitochondria aggregate in a stable area on the animal-vegetal axis: in organisms with spiral segmentation this zone is not involved in cleavage, so the aggregation is maintained. Moreover, sperm mitochondria reach the same embryonic area in which also germ plasm is transferred. In 2-blastomere embryos, the segregation of sperm mitochondria in the same region with Vasa suggests their contribution in male germ line formation. In DUI male embryos, M-type mitochondria must be recognized by egg factors to be actively transferred in the germ line, where they become dominant replacing the Balbiani body mitochondria. The typical features of germ line assembly point to a common biological mechanism shared by DUI and SMI organisms. Although the molecular dynamics of the segregation of sperm mitochondria in DUI species are unknown, they could be a variation of the mechanism regulating the mitochondrial bottleneck in all metazoans
DNA repair, genome stability and cancer: a historical perspective
The multistep process of cancer progresses over many years. The prevention of mutations by DNA repair pathways led to an early appreciation of a role for repair in cancer avoidance. However, the broader role of the DNA damage response (DDR) emerged more slowly. In this Timeline article, we reflect on how our understanding of the steps leading to cancer developed, focusing on the role of the DDR. We also consider how our current knowledge can be exploited for cancer therapy
- β¦