4,453 research outputs found

    Development and validation of the ACE tool: Assessing medical trainees' competency in evidence based medicine

    Get PDF
    BACKGROUND: While a variety of instruments have been developed to assess knowledge and skills in evidence based medicine (EBM), few assess all aspects of EBM - including knowledge, skills attitudes and behaviour - or have been psychometrically evaluated. The aim of this study was to develop and validate an instrument that evaluates medical trainees’ competency in EBM across knowledge, skills and attitude. METHODS: The ‘Assessing Competency in EBM’ (ACE) tool was developed by the authors, with content and face validity assessed by expert opinion. A cross-sectional sample of 342 medical trainees representing ‘novice’, ‘intermediate’ and ‘advanced’ EBM trainees were recruited to complete the ACE tool. Construct validity, item difficulty, internal reliability and item discrimination were analysed. RESULTS: We recruited 98 EBM-novice, 108 EBM-intermediate and 136 EBM-advanced participants. A statistically significant difference in the total ACE score was observed and corresponded to the level of training: on a 0-15-point test, the mean ACE scores were 8.6 for EBM-novice; 9.5 for EBM-intermediate; and 10.4 for EBM-advanced (p < 0.0001). Individual item discrimination was excellent (Item Discrimination Index ranging from 0.37 to 0.84), with internal reliability consistent across all but three items (Item Total Correlations were all positive ranging from 0.14 to 0.20). CONCLUSION: The 15-item ACE tool is a reliable and valid instrument to assess medical trainees’ competency in EBM. The ACE tool provides a novel assessment that measures user performance across the four main steps of EBM. To provide a complete suite of instruments to assess EBM competency across various patient scenarios, future refinement of the ACE instrument should include further scenarios across harm, diagnosis and prognosis

    Observatons of NGC 3077 Galaxy in Narrow Band [SII] and H_alpha Filters

    Full text link
    We present observations of the HI tidal arm near dwarf galaxy NGC 3077 (member of the M81 galaxy group) in narrow band [SII] and H_alpha filters. Observations were carried out in March 2011 with the 2m RCC telescope at NAO Rozhen, Bulgaria. Our search for possible supernova remnant candidates (identified as sources with enhanced [SII] emission relative to their H_alpha emission) in this region yielded no sources of this kind. Nevertheless, we found a number of objects with significant H_alpha emission that probably represent uncatalogued, low brightness HII regions.Comment: 4 pages, 1 figure, 3 tables, Proceedings of the 8th Serbian Conference on Spectral Line Shapes in Astrophysics, 2011 June 5-10, Divcibare, Serbi

    Optical Observations of M81 Galaxy Group in Narrow Band [SII] and H_alpha Filters: Holmberg IX

    Full text link
    We present observations of the nearby tidal dwarf galaxy Holmberg IX in M81 galaxy group in narrow band [SII] and Hα\alpha filters, carried out in March and November 2008 with the 2m RCC telescope at NAO Rozhen, Bulgaria. Our search for resident supernova remnants (identified as sources with enhanced [SII] emission relative to their Hα\alpha emission) in this galaxy yielded no sources of this kind, besides M&H 10-11 or HoIX X-1. Nevertheless, we found a number of objects with significant Hα\alpha emission that probably represent uncatalogued HII regions.Comment: 8 pages, 5 figure

    Self-Powered Edible Defrosting Sensor

    Get PDF
    Improper freezing of food causes food waste and negatively impacts the environment. In this work, we propose a device that can detect defrosting events by coupling a temperature-activated galvanic cell with an ionochromic cell, which is activated by the release of ions during current flow. Both the components of the sensor are fabricated through simple and low-energy-consuming procedures from edible materials. The galvanic cell operates with an aqueous electrolyte solution, producing current only at temperatures above the freezing point of the solution. The ionochromic cell exploits the current generated during the defrosting to release tin ions, which form complexes with natural dyes, causing the color change. Therefore, this sensor provides information about defrosting events. The temperature at which the sensor reacts can be tuned between 0 and -50 °C. The device can thus be flexibly used in the supply chain: as a sensor, it can measure the length of exposure to above-the-threshold temperatures, while as a detector, it can provide a signal that there was exposure to above-the-threshold temperatures. Such a device can ensure that frozen food is handled correctly and is safe for consumption. As a sensor, it could be used by the workers in the supply chain, while as a detector, it could be useful for end consumers, ensuring that the food was properly frozen during the whole supply chain

    Graphene-based photovoltaic cells for near-field thermal energy conversion

    Get PDF
    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. In far field, the efficiency of these systems is limited by the thermodynamic Schockley-Queisser limit corresponding to the case where the source is a black body. On the other hand, in near field, the heat flux which can be transferred to a photovoltaic cell can be several orders of magnitude larger because of the contribution of evanescent photons. This is particularly true when the source supports surface polaritons. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. Here we show that graphene-based hybrid photovoltaic cells can significantly enhance the generated power paving the way to a promising technology for an intensive production of electricity from waste heat.Comment: 5 pages, 4 figure

    Polymerization in carbone : a novel method for the synthesis of more sustainable electrodes and their application as cathodes for lithium–organic energy storage materials based on vanillin

    No full text
    Sustainable energy storage materials are needed to implement necessary transitions to a more sustainable society. Therefore, we present novel vanillin (and thus ultimately possibly lignin)-derived electrode materials for lithium-ion-based energy storage systems. In the present approach, vanillin is first modified in two sustainable steps to afford bisvanillonitrile (BVN). The precursor materials for the electrodes are made from BVN and carbon black and are subsequently treated in the atmosphere of triflic acid in order to polymerize BVN. Used as a cathode material in a lithium-ion-based energy storage device, the resulting material shows capacities up to 90 mAh g–1 (respective to the whole electrode mass). This extraordinary performance can be attributed to a combination of non-Faradaic and Faradaic charge storage involving quinone units, which are abundantly found in the polymer backbone. In contrast to conventional organic electrode materials, excellent contact to carbon as a conductive additive is established by performing the polymerization in a mixture with carbon (in carbone), allowing the omission of additional unsustainable binder materials. Due to the sustainable synthesis and good performance, such sustainable electrodes may be applied in future energy storage devices

    The Breakdown of the Fingerprinting of Vortices by Hysteresis Loops in Circular Multilayer Ring Arrays

    Get PDF
    Microscale single-layer ferromagnetic rings typically exhibit a magnetic vortex state at remanence, characterized by a flux-closed magnetic state with zero stray fields. Magnetic reversal in such systems yields a vanishing remanent magnetization. In contrast, the authors show that in individual layers in thin rings, which alternate magnetic and nonmagnetic materials (NiFe/Cu/Co), layer-resolved hysteresis loops, measured using x-ray resonant magnetic scattering, exhibit the characteristics of a vortex formation, although photoelectron emission microscopy and micromagnetic simulations clearly prove that multidomain states are formed. This result is of considerable importance for the development of pseudo-spin-valve-type structures for applications

    The Breakdown of the Fingerprinting of Vortices by Hysteresis Loops in Circular Multilayer Ring Arrays

    Get PDF
    Microscale single-layer ferromagnetic rings typically exhibit a magnetic vortex state at remanence, characterized by a flux-closed magnetic state with zero stray fields. Magnetic reversal in such systems yields a vanishing remanent magnetization. In contrast, the authors show that in individual layers in thin rings, which alternate magnetic and nonmagnetic materials (NiFe/Cu/Co), layer-resolved hysteresis loops, measured using x-ray resonant magnetic scattering, exhibit the characteristics of a vortex formation, although photoelectron emission microscopy and micromagnetic simulations clearly prove that multidomain states are formed. This result is of considerable importance for the development of pseudo-spin-valve-type structures for applications
    • …
    corecore