9,046 research outputs found

    A novel route to a finite center-of-mass momentum pairing state; current driven FFLO state

    Full text link
    The previously studied Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is stabilized by a magnetic field via the Zeeman coupling in spin-singlet superconductors. Here we suggest a novel route to achieve non-zero center-of-mass momentum pairing states in superconductors with Fermi surface nesting. We investigate two-dimensional superconductors under a uniform external current, which leads to a finite pair-momentum of qe{\bf q}_{e}. We find that an FFLO state with a spontaneous pair-momentum of qs{\bf q}_{s} is stabilized above a certain critical current which depends on the direction of the external current. A finite qs{\bf q}_s arises in order to make the total pair-momentum of qt(=qs+qe){\bf q}_t(={\bf q}_s + {\bf q}_e) perpendicular to the nesting vector, which lowers the free energy of the FFLO state, as compared to the superconducting and normal states. We also suggest experimental signatures of the FFLO state.Comment: 4 pages, 5 figure

    Interlayer coherent composite Fermi liquid phase in quantum Hall bilayers

    Get PDF
    Composite fermions have played a seminal role in understanding the quantum Hall effect, particularly the formation of a compressible `composite Fermi liquid' (CFL) at filling factor nu = 1/2. Here we suggest that in multi-layer systems interlayer Coulomb repulsion can similarly generate `metallic' behavior of composite fermions between layers, even if the electrons remain insulating. Specifically, we propose that a quantum Hall bilayer with nu = 1/2 per layer at intermediate layer separation may host such an interlayer coherent CFL, driven by exciton condensation of composite fermions. This phase has a number of remarkable properties: the presence of `bonding' and `antibonding' composite Fermi seas, compressible behavior with respect to symmetric currents, and fractional quantum Hall behavior in the counterflow channel. Quantum oscillations associated with the Fermi seas give rise to a new series of incompressible states at fillings nu = p/[2(p \pm 1)] per layer (p an integer), which is a bilayer analogue of the Jain sequence.Comment: 4 pages, 3 figure

    Exotic Gapless Mott Insulators of Bosons on Multi-Leg Ladders

    Get PDF
    We present evidence for an exotic gapless insulating phase of hard-core bosons on multi-leg ladders with a density commensurate with the number of legs. In particular, we study in detail a model of bosons moving with direct hopping and frustrating ring exchange on a 3-leg ladder at ν=1/3\nu=1/3 filling. For sufficiently large ring exchange, the system is insulating along the ladder but has two gapless modes and power law transverse density correlations at incommensurate wave vectors. We propose a determinantal wave function for this phase and find excellent comparison between variational Monte Carlo and density matrix renormalization group calculations on the model Hamiltonian, thus providing strong evidence for the existence of this exotic phase. Finally, we discuss extensions of our results to other NN-leg systems and to NN-layer two-dimensional structures.Comment: 5 pages, 4 figures; v3 is the print version; supplemental material attache

    Cocatalyst Binding Effects in Organocatalytic Ring-Opening Polymerization of L-Lactide

    Get PDF
    Thiourea/alkylamine cocatalysts have previously been shown to be effective systems for the ring-opening polymerization (ROP) of lactide, but an experimental explanation for the varied activity and selectivity of these structurally similar alkylamine cocatalysts combined with thiourea is elusive. In this work, several alkylamine bases are shown to be weakly associated with a thiourea cocatalyst in solution, and the nature of cocatalyst interactions vary with the identity of the alkylamine. Kinetic analyses of the organocatalytic ROP reactions reveal noninhibitory behavior in [alkylamine] and a new mode of activity for thiourea. Reactivity patterns are proposed based on computed cocatalyst geometries, and a new cocatalyst pair for the ROP of lactide is disclosed

    Bose Metals and Insulators on Multi-Leg Ladders with Ring Exchange

    Get PDF
    We establish compelling evidence for the existence of new quasi-one-dimensional descendants of the d-wave Bose liquid (DBL), an exotic two-dimensional quantum phase of uncondensed itinerant bosons characterized by surfaces of gapless excitations in momentum space [O. I. Motrunich and M. P. A. Fisher, Phys. Rev. B {\bf 75}, 235116 (2007)]. In particular, motivated by a strong-coupling analysis of the gauge theory for the DBL, we study a model of hard-core bosons moving on the NN-leg square ladder with frustrating four-site ring exchange. Here, we focus on four- and three-leg systems where we have identified two novel phases: a compressible gapless Bose metal on the four-leg ladder and an incompressible gapless Mott insulator on the three-leg ladder. The former is conducting along the ladder and has five gapless modes, one more than the number of legs. This represents a significant step forward in establishing the potential stability of the DBL in two dimensions. The latter, on the other hand, is a fundamentally quasi-one-dimensional phase that is insulating along the ladder but has two gapless modes and incommensurate power law transverse density-density correlations. In both cases, we can understand the nature of the phase using slave-particle-inspired variational wave functions consisting of a product of two distinct Slater determinants, the properties of which compare impressively well to a density matrix renormalization group solution of the model Hamiltonian. Stability arguments are made in favor of both quantum phases by accessing the universal low-energy physics with a bosonization analysis of the appropriate quasi-1D gauge theory. We will briefly discuss the potential relevance of these findings to high-temperature superconductors, cold atomic gases, and frustrated quantum magnets.Comment: 33 pages, 16 figures; this is the print version, only very minor changes from v

    The Stripe 82 1-2 GHz Very Large Array Snapshot Survey: Multiwavelength Counterparts

    Full text link
    We have combined spectrosopic and photometric data from the Sloan Digital Sky Survey (SDSS) with 1.41.4 GHz radio observations, conducted as part of the Stripe 82 1−21-2 GHz Snapshot Survey using the Karl G. Jansky Very Large Array (VLA), which covers ∼100\sim100 sq degrees, to a flux limit of 88 μ\muJy rms. Cross-matching the 11 76811\,768 radio source components with optical data via visual inspection results in a final sample of 4 7954\,795 cross-matched objects, of which 1 9961\,996 have spectroscopic redshifts and 2 7992\,799 objects have photometric redshifts. Three previously undiscovered Giant Radio Galaxies (GRGs) were found during the cross-matching process, which would have been missed using automated techniques. For the objects with spectroscopy we separate radio-loud Active Galactic Nuclei (AGN) and star-forming galaxies (SFGs) using three diagnostics and then further divide our radio-loud AGN into the HERG and LERG populations. A control matched sample of HERGs and LERGs, matched on stellar mass, redshift and radio luminosity, reveals that the host galaxies of LERGs are redder and more concentrated than HERGs. By combining with near-infrared data, we demonstrate that LERGs also follow a tight K−zK-z relationship. These results imply the LERG population are hosted by population of massive, passively evolving early-type galaxies. We go on to show that HERGs, LERGs, QSOs and star-forming galaxies in our sample all reside in different regions of a WISE colour-colour diagram. This cross-matched sample bridges the gap between previous `wide but shallow' and `deep but narrow' samples and will be useful for a number of future investigations.Comment: 17 pages, 19 figures. Resubmitted to MNRAS after the initial comment

    Characterization of rutile passivation layers formed on Magnéli-phase titanium oxide inert anodes

    Get PDF
    An ex situ characterization study has been performed on rutile passivation layers on inert anodes used for molten salt electrochemical studies. Rutile layer thicknesses were estimated using a number of ex situ methods, including laboratory and synchrotron X-ray diffraction and optical microscopy. The only phases in the anode detected by diffraction were the Magnéli phases (TinO2n-1, n = 5-6) of the unreacted anode and rutile (TiO2), which forms on electrolysis. These measurements validate a previously developed in situ energy-dispersive X-ray diffraction analysis technique [Scarlett, Madsen, Evans, Coelho, McGregor, Rowles, Lanyon & Urban (2009). J. Appl. Cryst. 42, 502-512]

    Sample-displacement correction for whole-pattern profile fitting of powder diffraction data collected in capillary geometry

    Get PDF
    Abstract: Recent in situ experimentation at the Australian Synchrotron resulted in the nucleation and crystallization of material on the walls of the capillary reaction vessels. This lining of the capillary walls, without filling the bulk of the capillary volume, produced an artefact in the diffraction data due to sample displacement across the capillary. In effect, the experiment was examining simultaneously two samples displaced by equal and opposite amounts from the diffractometer centre. This was exaggerated by the fact that large-diameter (1 mm) capillaries had been used in order to increase the total sample volume and hence maximize the amount of material formed and examined. The effect of this displacement was to shift the diffraction peaks simultaneously to both lower and higher angles than their `ideal' positions, causing peak splitting in many instances. A model has been developed which considers the sample as being effectively two flat plate samples, thus allowing for correction through the use of sample displacement. An additional problem resulted from the oriented growth of the material on the capillary walls, producing preferred orientation in the observed data. The correction model can also be extended to model such anisotropic peak splitting caused by this preferential orientation of the crystallites on the capillary wall
    • …
    corecore