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Recent in situ experimentation at the Australian Synchrotron resulted in the

nucleation and crystallization of material on the walls of the capillary reaction

vessels. This lining of the capillary walls, without filling the bulk of the capillary

volume, produced an artefact in the diffraction data due to sample displacement

across the capillary. In effect, the experiment was examining simultaneously two

samples displaced by equal and opposite amounts from the diffractometer

centre. This was exaggerated by the fact that large-diameter (1 mm) capillaries

had been used in order to increase the total sample volume and hence maximize

the amount of material formed and examined. The effect of this displacement

was to shift the diffraction peaks simultaneously to both lower and higher angles

than their ‘ideal’ positions, causing peak splitting in many instances. A model has

been developed which considers the sample as being effectively two flat plate

samples, thus allowing for correction through the use of sample displacement.

An additional problem resulted from the oriented growth of the material on the

capillary walls, producing preferred orientation in the observed data. The

correction model can also be extended to model such anisotropic peak splitting

caused by this preferential orientation of the crystallites on the capillary wall.

1. Introduction

In situ studies into the nucleation and crystallization of jaro-

site-related minerals [(A,H3O)Fe3(SO4)2(OH)6, where A = K

or Na] were conducted on the powder diffraction beamline

(10BM1) at the Australian Synchrotron. The sample envir-

onment for the data collection is shown in Fig. 1 and has been

described previously (Scarlett et al., 2008). In these experi-

ments, a filtered solution containing Fe2(SO4)3�xH2O and

either K2SO4 or Na2SO4 was heated in order to co-precipitate

jarosite or natrojarosite. The internal wall of the capillary

provided the nucleation sites and many experiments produced

‘linings’ of oriented crystallites, as shown schematically in

Fig. 2. The diffraction data obtained from such a sample are

effectively being produced from two samples displaced in

front of and behind the centre of the diffractometer in the

direction of the beam, resulting in two diffracted peaks, one

from either side of the capillary. The resolution of the

synchrotron is sufficient to reveal this effect as peak splitting.

This is shown in Fig. 3, where an ex situ diffraction pattern of

natrojarosite in a filled 0.3 mm capillary is shown (black,

lower), along with a pattern from a similar material crystal-

lized in situ (grey, upper) in the manner shown in Fig. 2. An

example of the peak splitting due to the crystallites diffracting

from opposing sides of the capillary is marked with arrows in

Figure 1
The sample environment for the in situ crystallization experiments,
showing (A) the oscillation device for the sample stage, (B) the pressure
line, (C) the Swagelock sample stage, (D) the goniometer head holding
the sample stage, (E) the capillary reaction vessel, (F) the thermocouple
and (G) the hot-air blower.

electronic reprint



Fig. 3. In order to model adequately the structure of the

material generating the diffraction pattern, this sample-

displacement artefact must be described in order to separate it

from any physical or chemical parameters, which may then be

refined. This has been achieved by considering the experi-

mental geometry and has been tested by preparing a series of

samples that exhibit this displacement in a controlled

fashion.

2. Experimental

2.1. Model development

Fig. 4 shows how the position of the diffracted beam shifts

as a result of sample displacement either (a) parallel or (b)

perpendicular to a parallel incident beam in Debye–Scherrer

geometry. The sample, S, is displaced from the centre of the

diffractometer, O, by a distance u. These displacements shift

the diffracted peak from O0 to S0, with apparent diffraction

angles of 2� � � for a parallel displacement and 2� + � for a

perpendicular displacement. The angles � and � are given by

sin � ¼ u

R
sin 2�ð Þ; ð1Þ
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Figure 2
Schematic diagram showing a capillary reaction vessel with oriented
crystallites lining its internal wall.

Figure 3
Parts of two diffraction patterns for natrojarosite, collected ex situ in a
0.3 mm capillary (black, lower), and in situ in a 1 mm capillary (grey,
upper, offset for clarity) prepared at 368 K. An example of the peak
splitting due to sample displacement across the capillary is indicated by
the arrows.

Figure 4
Peak shift due to sample displacement in Debye–Scherrer geometry. The
sample, S, can be displaced from the origin, O, in a direction either (a)
parallel or (b) perpendicular to the incident beam, resulting in the
diffraction peak shifting from O0 to S0. The effective diffraction angles are
2� � � for a parallel displacement and 2� + � for a perpendicular
displacement. The detector radius is given by R.
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sin � ¼ u

R
cos 2�ð Þ; ð2Þ

where 2� is the diffraction angle, u the sample displacement

and R the detector radius. Equations (1) and (2) are embodied

in the correction for sample eccentricity given by Klug &

Alexander (1974) and modified from Beu & Scott (1962),

given a parallel incident beam. Parallel and perpendicular

displacements can be applied simultaneously to provide off-

axis displacement corrections.

In the situation of having crystallization on the surface of a

capillary, and a parallel incident X-ray beam smaller than the

diameter of the capillary, it is only necessary to correct for

sample displacement both in front of and behind the sample

centre. This is achieved by modelling the data with two

identical structures, one with a positive and one with a nega-

tive parallel displacement, i.e the measured peak positions are

corrected using equation (1), with equal and opposite

displacements of half the capillary diameter. Note that the

cylindrical nature of the sample is not being modelled, the

sample is being considered as effectively two flat plates and a

well aligned diffractometer is assumed. In the crystallization

experiments considered in this study, absorption was found to

have a negligible effect on peak intensity and position and was

not considered further. For a discussion of X-ray absorption in

annular samples, please refer to Kendig & Pings (1965).

2.2. Sample preparation

In order to test this model, samples were prepared in which

a material prone to orientation [brucite, Mg(OH)2; Fig. 5] was

coated onto the outside of capillaries of various diameters

(nominally 0.3, 0.5, 1.0 and 1.5 mm). This was achieved by

repeatedly dipping the capillaries into a stirred slurry of

brucite in H2O, to which a few drops of cellulose lacquer had

been added to assist with adhesion. The structural parameters

of brucite were initially determined from a data set collected

from a filled 0.3 mm capillary and then fixed in the subsequent

refinement of the data from the coated capillaries. The model

was also applied to diffraction data collected from jarosite

samples formed in situ as described above.

2.3. Data collection

Data were collected using 0.953421 Å X-rays, calibrated to

NIST standard LaB6 660a, from samples coated onto capil-

laries of nominal diameter 0.3, 0.5, 1.0 and 1.5 mm, as

described above. In order to maximize peak splitting resulting

from crystallization on the walls of the capillaries, the vertical

size (equatorial plane) of the X-ray beam was set such that it

was only just larger than a 0.3 mm-diameter capillary. In doing

so, it was also possible to acquire data from the ideal case – a

filled capillary – without aberrations induced by the instru-

ment geometry. This allowed comparison of the ideal data with

data from samples that were larger in diameter than the

vertical beam size. All capillaries were positioned in the
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Figure 5
Brucite morphology, showing the flat hexagonal plates which lead to
preferred orientation along the [00l] direction.

Figure 7
A graph showing the refined values of the horizontal specimen
displacement for each capillary diameter (black) compared with the
theoretical values (i.e. half the capillary diameter) (grey). The error bars
represent the standard deviation in the measured capillary diameter.

Figure 6
The 111 reflection of brucite, collected from samples coated onto 1.5, 1.0
and 0.5 mm capillaries and one 0.3 mm capillary packed with powder,
showing the evolution of peak splitting with sample displacement.
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diffractometer rotation centre and spun at ca 1 Hz. The X-ray

beam was aligned to coincide with the diffractometer centre.

3. Results and discussion

Fig. 6 shows the peak broadening and eventual splitting of the

brucite (111) reflection associated with specimen displace-

ment. Full-profile Rietveld refinement using TOPAS (Bruker,

2009) was applied to each data set, using the structural

information of Černý et al. (1995) for brucite. A model was

constructed in which the structural parameters (unit-cell

parameters, thermal displacement parameters) were fixed to

the values determined from the data set measured on the filled

0.3 mm capillary. It was found that the sample had oriented

preferentially on the capillaries through the sample-prepara-

tion (dipping) process. It was necessary to model this unusual

sample orientation using spherical harmonics for the data

collected from the coated capillaries. The sample displacement

was modelled using two identical structures, with their scale

factors constrained to be equal and with equal and opposite

horizontal displacement values. Fig. 7 shows the refined values

for the specimen-displacement parameters for each capillary

diameter (black), along with the theoretical values (grey),

which are equal to half the capillary diameter if the capillary is

perfectly centred. These are in very good agreement, consid-

ering the variation in capillary diameter from the nominal

manufactured value and any potential misalignment of the

capillaries.

Given the highly oriented nature of the brucite, a reflection-

dependent version of the sample-displacement correction was

applied by allowing each class of reflections to have an inde-

pendent sample-displacement parameter. This provided a

slight improvement in the most extreme case (1.5 mm capil-

lary), with a reduction in Rwp from 0.02075 to 0.01997.

However, as can be seen in Fig. 8, the improvement in the fit is

barely discernible and does not warrant the added degree of

complexity.

research papers

J. Appl. Cryst. (2011). 44, 60–64 Nicola Vivienne Yorke Scarlett et al. � Sample-displacement correction 63

Figure 8
Parts of the Rietveld-fitted diffraction patterns for brucite coated onto a
1.5 mm capillary. The symbols are the experimental points and the lines
correspond to the calculated patterns. The grey lines correspond to a
model for which a single (equal and opposite) horizontal displacement
value has been refined, and the black lines show the results of the
reflection-dependent displacement correction.

Figure 9
Parts of the Rietveld-fitted diffraction patterns for natrojarosite formed
in situ in a 1 mm capillary at 368 K. The symbols are the experimental
points and the lines correspond to the calculated patterns. The grey lines
correspond to a model for which the horizontal displacement is not
corrected, and the black lines show the results of the displacement
correction.
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Fig. 9 shows parts of the Rietveld-fitted diffraction patterns

for natrojarosite formed in situ in a 1 mm capillary at 368 K

(Scarlett et al., 2010). The model was initially refined with a

single monoclinic natrojarosite structure and no correction for

horizontal displacement (grey lines). It was then modified to

include a second, identical, structure with equal and opposite

displacement parameters, as described for the brucite case

above (black lines). The improvement in the fit to the

observed data is clearly apparent and the Rwp value reduced

from 0.02667 to 0.01287. Note that these values are inherently

low, as a result of the large contribution to the background

from the solution inside the capillary. The refined value of the

displacement parameter was 0.499 mm, which is consistent

with a 1 mm capillary reaction vessel.

4. Conclusion

A sample-displacement correction has been developed to deal

with unusual sample presentations found in crystallization

studies. The correction addresses the issue of Debye–Scherrer

geometry in which the capillary is not actually filled with

sample, but rather coated with crystallites either internally or

externally. The correction considers the sample as comprising

two separate samples equally displaced about the diffract-

ometer centre in the direction of the incident X-ray beam. The

method has been tested with a series of samples that exhibit

this displacement in a controlled fashion and also on a sample

produced during an in situ crystallization study, and found to

be effective. The method can be modified to be made reflec-

tion-dependent to deal more accurately with preferential

orientation of crystallites, but this was found to be unnecessary

in the cases studied here.

This research was undertaken on the powder diffraction

beamline at the Australian Synchrotron, Victoria, Australia.

The authors express their thanks to Ian Grey, Helen Brand,

Suzanne Neville and Nathan Webster (CSIRO Process

Science and Engineering) for help with the synchrotron data

collections.
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