6,750 research outputs found
A critical Mach number for electron injection in collisionless shocks
Electron acceleration in collisionless shocks with arbitrary magnetic field
orientations is discussed. It is shown that the injection of thermal electrons
into diffusive shock acceleration process is achieved by an electron beam with
a loss-cone in velocity space that is reflected back upstream from the shock
through shock drift acceleration mechanism. The electron beam is able to excite
whistler waves which can scatter the energetic electrons themselves when the
Alfven Mach number of the shock is sufficiently high. A critical Mach number
for the electron injection is obtained as a function of upstream parameters.
The application to supernova remnant shocks is discussed.Comment: 4 pages, 2 figure, accepted for publication in Physical Review
Letter
Mass singularity and confining property in
We discuss the properties of the position space fermion propagator in three
dimensional QED which has been found previouly based on Ward-Takahashi-identity
for soft-photon emission vertex and spectral representation.There is a new type
of mass singularity which governs the long distance behaviour.It leads the
propagator vanish at large distance.This term corresponds to dynamical mass in
position space.Our model shows confining property and dynamical mass generation
for arbitrary coupling constant.Since we used dispersion retation in deriving
spectral function there is a physical mass which sets a mass scale.For finite
cut off we obtain the full propagator in the dispersion integral as a
superposition of different massses.Low energy behaviour of the proagator is
modified to decrease by position dependent mass.In the limit of zero infrared
cut-off the propagator vanishes with a new kind of infrared behaviour.Comment: 22pages,4figures,revtex4,Notational sloppiness are crrected.Submitted
to JHE
Electronic Orders Induced by Kondo Effect in Non-Kramers f-Electron Systems
This paper clarifies the microscopic nature of the staggered scalar order,
which is specific to even number of f electrons per site. In such systems,
crystalline electric field (CEF) can make a singlet ground state. As exchange
interaction with conduction electrons increases, the CEF singlet at each site
gives way to Kondo singlets. The collective Kondo singlets are identified with
itinerant states that form energy bands. Near the boundary of itinerant and
localized states, a new type of electronic order appears with staggered Kondo
and CEF singlets. We present a phenomenological three-state model that
qualitatively reproduces the characteristic phase diagram, which have been
obtained numerically with use of the continuous-time quantum Monte Carlo
combined with the dynamical mean-field theory. The scalar order observed in
PrFe_4P_{12} is ascribed to this staggered order accompanying charge density
wave (CDW) of conduction electrons. Accurate photoemission and tunneling
spectroscopy should be able to probe sharp peaks below and above the Fermi
level in the ordered phase.Comment: 7 pages, 8 figure
X-Ray Study of the Outer Region of Abell 2142 with Suzaku
We observed outer regions of a bright cluster of galaxies A2142 with Suzaku.
Temperature and brightness structures were measured out to the virial radius
() with good sensitivity. We confirmed the temperature drop from 9 keV
around the cluster center to about 3.5 keV at , with the density
profile well approximated by the model with . Within
0.4\r_{200}, the entropy profile agrees with , as predicted by the
accretion shock model. The entropy slope becomes flatter in the outer region
and negative around . These features suggest that the intracluster
medium in the outer region is out of thermal equilibrium. Since the relaxation
timescale of electron-ion Coulomb collision is expected to be longer than the
elapsed time after shock heating at , one plausible reason of the low
entropy is the low electron temperature compared to that of ions. Other
possible explanations would be gas clumpiness, turbulence and bulk motions of
ICM\@. We also searched for a warm-hot intergalactic medium around
and set an upper limit on the oxygen line intensity. Assuming a line-of-sight
depth of 2 Mpc and oxygen abundance of 0.1 solar, the upper limit of an
overdensity is calculated to be 280 or 380, depending on the foreground
assumption.Comment: 14 pages, 8 figure
Vibrationally resolved partial cross sections and asymmetry parameters for carbon K-shell photoionization of the CO_2 molecule
We have measured the vibrationally resolved partial cross sections \sigma_{v_1^{\prime}} and asymmetry parameters \beta_{v_1^{\prime}} for C K-shell photoionization of the CO2 molecule in the Σu shape resonance region above the C K-shell ionization threshold. The positions of both the maxima of \sigma_{v_1^{\prime}} and the minima of \beta_{v_1^{\prime}} move towards the C K-shell threshold with increasing symmetric stretching vibrational excitation v'1 in the C 1s single-hole state. Calculations employing the relaxed-core Hartree–Fock approach reproduce the observed vibrational effects
Properties of the cosmological filament between two clusters: A possible detection of a large-scale accretion shock by
We report on the results of a observation of the plasma in the
filament located between the two massive clusters of galaxies Abell 399 and
Abell 401. Abell 399 (=0.0724) and Abell 401 (=0.0737) are expected to be
in the initial phase of a cluster merger. In the region between the two
clusters, we find a clear enhancement in the temperature of the filament plasma
from 4 keV (expected value from a typical cluster temperature profile) to
6.5 keV. Our analysis also shows that filament plasma is present out to
a radial distance of 15' (1.3 Mpc) from a line connecting the two clusters. The
temperature profile is characterized by an almost flat radial shape with
6-7 keV within 10' or 0.8 Mpc. Across =8'~from the axis, the
temperature of the filament plasma shows a drop from 6.3 keV to 5.1 keV,
indicating the presence of a shock front. The Mach number based on the
temperature drop is estimated to be 1.3. We also successfully
determined the abundance profile up to 15' (1.3 Mpc), showing an almost
constant value (=0.3 solar) at the cluster outskirt. We estimated the
Compton -parameter to be 14.5, which is in
agreement with 's results (14-17 on the filament). The
line of sight depth of the filament is 1.1 Mpc, indicating that the
geometry of filament is likely a pancake shape rather than cylindrical. The
total mass of the filamentary structure is 7.7. We discuss a possible interpretation of the drop of X-ray emission
at the rim of the filament, which was pushed out by the merging activity and
formed by the accretion flow induced by the gravitational force of the
filament.Comment: 8 pages, 8 figures, accepted for publication in A&
- …