21 research outputs found

    In Vitro and In Vivo Evaluation of Infestation Deterrents Against Lice

    Get PDF
    The human head louse is a cosmopolitan ectoparasite and frequently infests many people, particularly school-age children. Due to widespread pyrethroid resistance and the lack of efficient resistance management, there has been a considerable interest in the protection of uninfested people and prevention of reinfestation by disrupting lice transfer. In this study, two nonclinical model systems (in vitro and in vivo) were used to determine the efficacy of the infestation deterrents, Elimax lotion and Elimax shampoo, against human head lice or poultry chewing lice, respectively. With in vitro assessments, female head lice exhibited significantly higher avoidance responses to hair tufts treated with either of the test formulations, which led to significantly higher ovipositional avoidance when compared with female lice on control hair tufts. Additionally, both formulations were determined to be competent infestation deterrents in a competitive avoidance test in the presence of a known attractant (head louse feces extract). In in vivo assessments using a previously validated poultry model, Elimax shampoo was determined to be an efficacious deterrent against poultry chewing lice within Menopon spp. and Menacanthus spp

    Dispersion as an Important Step in the Candida albicans Biofilm Developmental Cycle

    Get PDF
    Biofilms are dynamic microbial communities in which transitions between planktonic and sessile modes of growth occur interchangeably in response to different environmental cues. In the last decade, early events associated with C. albicans biofilm formation have received considerable attention. However, very little is known about C. albicans biofilm dispersion or the mechanisms and signals that trigger it. This is important because it is precisely C. albicans cells dispersed from biofilms that are the main culprits associated with candidemia and establishment of disseminated invasive disease, two of the gravest forms of candidiasis. Using a simple flow biofilm model recently developed by our group, we have performed initial investigations into the phenomenon of C. albicans biofilm dispersion, as well as the phenotypic characteristics associated with dispersed cells. Our results indicate that C. albicans biofilm dispersion is dependent on growing conditions, including carbon source and pH of the media used for biofilm development. C. albicans dispersed cells are mostly in the yeast form and display distinct phenotypic properties compared to their planktonic counterparts, including enhanced adherence, filamentation, biofilm formation and, perhaps most importantly, increased pathogenicity in a murine model of hematogenously disseminated candidiasis, thus indicating that dispersed cells are armed with a complete arsenal of “virulence factors” important for seeding and establishing new foci of infection. In addition, utilizing genetically engineered strains of C. albicans (tetO-UME6 and tetO-PES1) we demonstrate that C. albicans biofilm dispersion can be regulated by manipulating levels of expression of these key genes, further supporting the evidence for a strong link between biofilms and morphogenetic conversions at different stages of the C. albicans biofilm developmental cycle. Overall, our results offer novel and important insight into the phenomenon of C. albicans biofilm dispersion, a key part of the biofilm developmental cycle, and provide the basis for its more detailed analysis

    Methods to study microbial adhesion on abiotic surfaces

    Get PDF
    Microbial biofilms are a matrix of cells and exopolymeric substances attached to a wet and solid surface and are commonly associated to several problems, such as biofouling and corrosion in industries and infectious diseases in urinary catheters and prosthesis. However, these cells may have several benefits in distinct applications, such as wastewater treatment processes, microbial fuel cells for energy production and biosensors. As microbial adhesion is a key step on biofilm formation, it is very important to understand and characterize microbial adhesion to a surface. This study presents an overview of predictive and experimental methods used for the study of bacterial adhesion. Evaluation of surface physicochemical properties have a limited capacity in describing the complex adhesion process. Regarding the experimental methods, there is no standard method or platform available for the study of microbial adhesion and a wide variety of methods, such as colony forming units counting and microscopy techniques, can be applied for quantification and characterization of the adhesion process.This work was financially supported by: Project UID/EQU/00511/2013-LEPABE, by the FCT/MEC with national funds and co-funded by FEDER in the scope of the P2020 Partnership Agreement; Project NORTE-07-0124-FEDER-000025 - RL2_Environment&Health, by FEDER funds through Programa Operacional Factores de Competitividade-COMPETE, by the Programa Operacional do Norte (ON2) program and by national funds through FCT - Fundacao para a Ciencia e a Tecnologia; European Research Project SusClean (Contract number FP7-KBBE-2011-5, project number: 287514), Scholarships SFRH/BD/52624/2014, SFRH/BD/88799/2012 and SFRH/BD/103810/2014

    Recurrent Colonization of Successively Implanted Tracheoesophageal Vocal Prostheses by a Member of the Fusarium solani Species Complex

    No full text
    Tracheoesophageal vocal prostheses (TVP) in laryngectomized patients commonly deteriorate due to overgrowth by yeasts, particularly Candida species. We describe the first case of colonization of such devices by a member of the Fusarium solani species complex in a patient with a history of glottal carcinoma. Three isolates, from three prostheses, were found morphologically consistent with the traditional picture of F. solani. Ribosomal sequence analysis showed that the isolates belonged to a distinct, as yet apparently unnamed phylogenetic species within the F. solani species complex. This species, one of two distinct genetic types (genotype 2) traditionally considered part of the plant-pathogenic subtaxon Fusarium solani f. sp. radicicola, has not previously been identified as an agent of human or animal disease, although it is closely related to a known etiologic agent of mycetoma, an Acremonium-like species recently renamed Fusarium falciforme. Sequence and multisatellite M13 polymorphism analysis revealed no distinctions among the case isolates. Production of cyclosporine was detected for all three case isolates
    corecore